A356093 a(n) = numerator((prime(n)-1)/prime(n)#), where prime(n)# = A002110(n) is the n-th primorial.
1, 1, 2, 1, 1, 2, 8, 3, 1, 2, 1, 6, 4, 1, 1, 2, 1, 2, 1, 1, 12, 1, 1, 4, 16, 10, 1, 1, 18, 8, 3, 1, 4, 1, 2, 5, 2, 27, 1, 2, 1, 6, 1, 32, 14, 3, 1, 1, 1, 2, 4, 1, 8, 25, 128, 1, 2, 9, 2, 4, 1, 2, 3, 1, 4, 2, 1, 8, 1, 2, 16, 1, 1, 2, 9, 1, 2, 6, 40, 4, 1, 2, 1
Offset: 1
Examples
Fractions begin with 1/2, 1/3, 2/15, 1/35, 1/231, 2/5005, 8/255255, 3/1616615, 1/10140585, 2/462120945, ...
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
primorial[n_] := Product[Prime[i], {i, 1, n}]; Numerator[Table[(Prime[i] - 1)/primorial[i], {i, 1, 100}]]
-
PARI
a(n) = numerator((prime(n)-1)/factorback(primes(n))); \\ Michel Marcus, Jul 26 2022
-
Python
from math import gcd from sympy import prime, primorial def A356093(n): return (p:=prime(n)-1)//gcd(p,primorial(n)) # Chai Wah Wu, Jul 26 2022
Comments