cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356126 a(n) = Sum_{k=1..n} k * sigma_3(k).

Original entry on oeis.org

1, 19, 103, 395, 1025, 2537, 4945, 9625, 16438, 27778, 42430, 66958, 95532, 138876, 191796, 266692, 350230, 472864, 603204, 787164, 989436, 1253172, 1533036, 1926156, 2319931, 2834263, 3386143, 4089279, 4796589, 5749149, 6672701, 7871069, 9101837, 10605521
Offset: 1

Views

Author

Seiichi Manyama, Jul 27 2022

Keywords

Crossrefs

Partial sums of A281372.
Column k=4 of A356124.
Cf. A356043.

Programs

  • Mathematica
    a[n_] := Sum[k * DivisorSigma[3, k], {k, 1, n}]; Array[a, 34] (* Amiram Eldar, Jul 28 2022 *)
  • PARI
    a(n) = sum(k=1, n, k*sigma(k, 3));
    
  • PARI
    a(n) = sum(k=1, n, k^4*binomial(n\k+1, 2));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, k^4*x^k/(1-x^k)^2)/(1-x))
    
  • Python
    from math import isqrt
    def A356126(n): return ((-(s:=isqrt(n))**2*(s+1)**2*((s<<1)+1)*(s*(3*(s+1))-1)>>1)+sum(k*(q:=n//k)*(q+1)*(15*k**3+((q<<1)+1)*(q*(3*(q+1))-1)) for k in range(1,s+1)))//30 # Chai Wah Wu, Oct 24 2023

Formula

a(n) = Sum_{k=1..n} k^4 * binomial(floor(n/k)+1,2).
G.f.: (1/(1-x)) * Sum_{k>=1} k^4 * x^k/(1 - x^k)^2.