cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356156 The nearest common ancestor of n and gcd(n, sigma(n)) in the Doudna tree (A005940).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 3, 1, 2, 3, 2, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 1, 1, 3, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 5, 1, 2, 3, 2, 1, 2, 5, 2, 1, 2, 5, 12, 1, 1, 3, 1, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 30 2022

Keywords

Crossrefs

Cf. A000203, A007691 (fixed points), A009194, A348040, A348041.

Programs

  • PARI
    Abincompreflen(n, m) = { my(x=binary(n),y=binary(m),u=min(#x,#y)); for(i=1,u,if(x[i]!=y[i],return(i-1))); (u);};
    Abinprefix(n,k) = { my(digs=binary(n)); fromdigits(vector(k,i,digs[i]),2); };
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A348040sq(x,y) = Abincompreflen(A156552(x), A156552(y));
    A348041sq(x,y) = A005940(1+Abinprefix(A156552(x),A348040sq(x,y)));
    A356156(n) = A348041sq(n,gcd(n, sigma(n)));

Formula

a(n) = A348041(n, A009194(n)) = A348041(n, gcd(n, A000203(n))).