A356178 Numbers k such that both Sum_{i=1..k} i*prime(i) and Sum_{i=1..k} (k+1-i)*prime(i) are prime.
1, 3, 199, 351, 1583, 1955, 2579, 2627, 3251, 3407, 3503, 5311, 6359, 6819, 7295, 7547, 8791, 9663, 10143, 10591, 11499, 11579, 12199, 12443, 14527, 15563, 15583, 16051, 16543, 16655, 18047, 18319, 20691, 20847, 23979, 24079, 24575, 25667, 26491, 28235, 30395, 30627, 32235, 32259, 33091, 33287, 33527
Offset: 1
Keywords
Examples
a(2) = 3 is a term because Sum_{i=1..3} i*prime(i) = 1*2 + 2*3 + 3*5 = 23 and Sum_{i=1..3} (4-i)*prime(i) = 3*2 + 2*3 + 1*5 = 17 are prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
S1:= 2: S2:= 2: S3:= 2*S2-S1: R:= 1: count:= 1: p:= 2: for n from 2 to 40000 do p:= nextprime(p); S1:= S1 + n*p; S2:= S2 + p; if n mod 4 = 3 and isprime(S1) then S3:= (n+1)*S2 - S1; if isprime(S3) then count:= count+1; R:= R, n; fi fi; od: R;
-
Mathematica
r = Range[35000]; p = Prime[r]; Intersection[Position[Accumulate[r*p], ?PrimeQ], Position[Accumulate[Accumulate[p]], ?PrimeQ]] // Flatten (* Amiram Eldar, Jul 28 2022 *)
-
PARI
isok(k) = my(vp=primes(k)); isprime(sum(i=1, k, i*vp[i])) && isprime(sum(i=1, k, (k+1-i)*vp[i])); \\ Michel Marcus, Jul 29 2022
Comments