cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356205 T(n,k) are the numerators of the coefficients of the Legendre polynomials of degree n, with increasing exponents, where T(n,k) is a triangle read by rows.

Original entry on oeis.org

1, 0, 1, -1, 0, 3, 0, -3, 0, 5, 3, 0, -15, 0, 35, 0, 15, 0, -35, 0, 63, -5, 0, 105, 0, -315, 0, 231, 0, -35, 0, 315, 0, -693, 0, 429, 35, 0, -315, 0, 3465, 0, -3003, 0, 6435, 0, 315, 0, -1155, 0, 9009, 0, -6435, 0, 12155, -63, 0, 3465, 0, -15015, 0, 45045, 0, -109395, 0, 46189
Offset: 0

Views

Author

Hugo Pfoertner, Jul 29 2022

Keywords

Examples

			The triangle begins:
   1;
   0,   1;
  -1,   0,    3;
   0,  -3,    0,     5;
   3,   0,  -15,     0,   35;
   0,  15,    0,   -35,    0,   63;
  -5,   0,  105,     0, -315,    0,   231;
   0, -35,    0,   315,    0, -693,     0,   429;
  35,   0, -315,     0, 3465,    0, -3003,     0, 6435;
   0, 315,    0, -1155,    0, 9009,     0, -6435,    0, 12155
.
Fractions:
   \ k 0        1       2      3       4       5      6       7      8
  n \ -------------------------------------------------------------------
  0 |  1        .       .      .       .       .       .      .      .
  1 |  0       1        .      .       .       .       .      .      .
  2 | -1/2     0       3/2     .       .       .       .      .      .
  3 |  0      -3/2     0      5/2      .       .       .      .      .
  4 |  3/8     0     -15/4    0      35/8      .       .      .      .
  5 |  0      15/8     0    -35/4     0      63/8      .      .      .
  6 | -5/16    0     105/16   0    -315/16    0     231/16    .      .
  7 |  0     -35/16    0    315/16    0    -693/16    0    429/16    .
  8 | 35/128   0    -315/32   0    3465/64    0   -3003/32   0   6435/128
		

Crossrefs

A356206 are the corresponding denominators.

Programs

  • PARI
    for (n=0, 10, my(P=pollegendre(n,'x));for (j=0, n, print1(numerator(polcoef(P,j)),", ")); print())