A356222 Array read by antidiagonals upwards where A(n,k) is the position of the k-th appearance of 2n in the sequence of prime gaps A001223. If A001223 does not contain 2n at least k times, set A(n,k) = -1.
2, 4, 3, 9, 6, 5, 24, 11, 8, 7, 34, 72, 15, 12, 10, 46, 42, 77, 16, 14, 13, 30, 47, 53, 79, 18, 19, 17, 282, 62, 91, 61, 87, 21, 22, 20, 99, 295, 66, 97, 68, 92, 23, 25, 26, 154, 180, 319, 137, 114, 80, 94, 32, 27, 28, 189, 259, 205, 331, 146, 121, 82, 124, 36, 29, 33
Offset: 1
Examples
Array begins: k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 n=1: 2 3 5 7 10 13 17 20 26 n=2: 4 6 8 12 14 19 22 25 27 n=3: 9 11 15 16 18 21 23 32 36 n=4: 24 72 77 79 87 92 94 124 126 n=5: 34 42 53 61 68 80 82 101 106 n=6: 46 47 91 97 114 121 139 168 197 n=7: 30 62 66 137 146 150 162 223 250 n=8: 282 295 319 331 335 378 409 445 476 n=9: 99 180 205 221 274 293 326 368 416 For example, the positions in A001223 of appearances of 2*3 begin: 9, 11, 15, 16, 18, 21, 23, ..., which is row n = 3 (A320701).
Crossrefs
Programs
-
Mathematica
gapa=Differences[Array[Prime,10000]]; Table[Position[gapa,2*(k-n+1)][[n,1]],{k,6},{n,k}]
Comments