A356232 Numbers whose prime indices are all odd and cover an initial interval of odd positive integers.
1, 2, 4, 8, 10, 16, 20, 32, 40, 50, 64, 80, 100, 110, 128, 160, 200, 220, 250, 256, 320, 400, 440, 500, 512, 550, 640, 800, 880, 1000, 1024, 1100, 1210, 1250, 1280, 1600, 1760, 1870, 2000, 2048, 2200, 2420, 2500, 2560, 2750, 3200, 3520, 3740, 4000, 4096, 4400
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 4: {1,1} 8: {1,1,1} 10: {1,3} 16: {1,1,1,1} 20: {1,1,3} 32: {1,1,1,1,1} 40: {1,1,1,3} 50: {1,3,3} 64: {1,1,1,1,1,1} 80: {1,1,1,1,3} 100: {1,1,3,3} 110: {1,3,5} 128: {1,1,1,1,1,1,1} 160: {1,1,1,1,1,3} 200: {1,1,1,3,3} 220: {1,1,3,5} 250: {1,3,3,3} 256: {1,1,1,1,1,1,1,1} 320: {1,1,1,1,1,1,3} 400: {1,1,1,1,3,3}
Crossrefs
The partitions with these Heinz numbers are counted by A053251.
This is the odd restriction of A055932.
A subset of A066208 (numbers with all odd prime indices).
This is the sorted version of A356603.
These are the positions of first appearances of rows in A356226. Other statistics are:
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356232 (this sequence)
A003963 multiplies together the prime indices.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; Select[Range[1000],normQ[(primeMS[#]+1)/2]&]
Comments