cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356232 Numbers whose prime indices are all odd and cover an initial interval of odd positive integers.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 20, 32, 40, 50, 64, 80, 100, 110, 128, 160, 200, 220, 250, 256, 320, 400, 440, 500, 512, 550, 640, 800, 880, 1000, 1024, 1100, 1210, 1250, 1280, 1600, 1760, 1870, 2000, 2048, 2200, 2420, 2500, 2560, 2750, 3200, 3520, 3740, 4000, 4096, 4400
Offset: 1

Views

Author

Gus Wiseman, Aug 20 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Also positions of first appearances of rows in A356226.

Examples

			The terms together with their prime indices begin:
      1: {}
      2: {1}
      4: {1,1}
      8: {1,1,1}
     10: {1,3}
     16: {1,1,1,1}
     20: {1,1,3}
     32: {1,1,1,1,1}
     40: {1,1,1,3}
     50: {1,3,3}
     64: {1,1,1,1,1,1}
     80: {1,1,1,1,3}
    100: {1,1,3,3}
    110: {1,3,5}
    128: {1,1,1,1,1,1,1}
    160: {1,1,1,1,1,3}
    200: {1,1,1,3,3}
    220: {1,1,3,5}
    250: {1,3,3,3}
    256: {1,1,1,1,1,1,1,1}
    320: {1,1,1,1,1,1,3}
    400: {1,1,1,1,3,3}
		

Crossrefs

The partitions with these Heinz numbers are counted by A053251.
This is the odd restriction of A055932.
A subset of A066208 (numbers with all odd prime indices).
This is the sorted version of A356603.
These are the positions of first appearances of rows in A356226. Other statistics are:
- length: A287170, firsts A066205
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
- positions of first appearances: A356232 (this sequence)
A001221 counts distinct prime factors, with sum A001414.
A001223 lists the prime gaps, reduced A028334.
A003963 multiplies together the prime indices.
A056239 adds up the prime indices, row sums of A112798.
A073491 lists numbers with gapless prime indices, complement A073492.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Select[Range[1000],normQ[(primeMS[#]+1)/2]&]