cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356241 a(n) is the number of distinct Fermat numbers dividing n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 2, 0, 0, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 2, 0, 0, 1, 0, 1, 1, 0, 0, 1, 2, 0, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2022

Keywords

Comments

A051179(n) is the least number k such that a(k) = n.
The asymptotic density of occurrences of 0 is 1/2.
The asymptotic density of occurrences of 1 is (1/2) * Sum_{k>=0} 1/2^(2^k) = (1/2) * A007404 = 0.4082107545... .

Crossrefs

Cf. A080307 (positions of nonzeros), A080308 (positions of 0's).

Programs

  • Mathematica
    f = Table[(2^(2^n) + 1), {n, 0, 5}]; a[n_] := Count[f, _?(Divisible[n, #] &)]; Array[a, 100]

Formula

a(A000215(n)) = 1.
a(A051179(n)) = n.
a(A003593(n)) = A112753(n).
a(n) <= A356242(n).
a(A080307(n)) > 0 and a(A080308(n)) = 0.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} 1/(2^(2^k)+1) = 0.5960631721... (A051158).