cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356239 a(n) = Sum_{k=1..n} k^n * sigma_0(k).

Original entry on oeis.org

1, 9, 71, 963, 9873, 231749, 2976863, 86348423, 1824883450, 55584932826, 1104642697680, 64932555347084, 1366828157222090, 61273696016238014, 2581786206601959958, 129797968403021602450, 3678372903755436314440, 295835829367866540495396
Offset: 1

Views

Author

Seiichi Manyama, Jul 30 2022

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local k; add(k^n * numtheory:-tau(k),k=1..n) end proc:
    map(f, [$1..30]); # Robert Israel, Jan 21 2024
  • Mathematica
    a[n_] := Sum[k^n * DivisorSigma[0, k], {k, 1, n}]; Array[a, 18] (* Amiram Eldar, Jul 30 2022 *)
  • PARI
    a(n) = sum(k=1, n, k^n*sigma(k, 0));
    
  • PARI
    a(n) = sum(k=1, n, k^n*sum(j=1, n\k, j^n));
    
  • Python
    from math import isqrt
    from sympy import bernoulli
    def A356239(n): return (-(bernoulli(n+1, (s:=isqrt(n))+1)-(b:=bernoulli(n+1)))**2//(n+1) + sum(k**n*(bernoulli(n+1, n//k+1)-b)<<1 for k in range(1,s+1)))//(n+1) # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^n * Sum_{j=1..floor(n/k)} j^n.

A356244 a(n) = Sum_{k=1..n} (k-1)^n * Sum_{j=1..floor(n/k)} j^2.

Original entry on oeis.org

0, 1, 9, 102, 1304, 20784, 377286, 7934693, 186969913, 4918785791, 142381832107, 4506907611825, 154723950495961, 5729421493899419, 227586600129484543, 9654927881195999544, 435660032125475809618, 20836109197604840372979, 1052865018045922422499409
Offset: 1

Views

Author

Seiichi Manyama, Jul 30 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(k - 1)^n * Sum[j^2, {j, 1, Floor[n/k]}], {k, 1, n}]; Array[a, 19] (* Amiram Eldar, Jul 30 2022 *)
  • PARI
    a(n) = sum(k=1, n, (k-1)^n*sum(j=1, n\k, j^2));
    
  • PARI
    a(n) = sum(k=1, n, k^2*(sigma(k, n-2)-(n\k)^n));
    
  • PARI
    a(n) = sum(k=1, n, k^2*sumdiv(k, d, (d-1)^n/d^2));

Formula

a(n) = Sum_{k=1..n} (k-1)^n * A000330(floor(n/k)).
a(n) = Sum_{k=1..n} k^2 * (sigma_{n-2}(k) - floor(n/k)^n) = A356243(n) - A350125(n).
a(n) = Sum_{k=1..n} k^2 * Sum_{d|k} (d - 1)^n / d^2.
a(n) = [x^n] (1/(1-x)) * Sum_{k>=1} (k - 1)^n * x^k * (1 + x^k)/(1 - x^k)^3.
Showing 1-2 of 2 results.