cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356265 Triangle read by rows. The reduced triangle of the partition triangle of reducible permutations (A356264). T(n, k) for n >= 1 and 0 <= k < n.

Original entry on oeis.org

0, 1, 0, 1, 2, 0, 1, 8, 2, 0, 1, 21, 25, 2, 0, 1, 49, 152, 55, 2, 0, 1, 106, 697, 670, 117, 2, 0, 1, 223, 2756, 5493, 2509, 243, 2, 0, 1, 459, 9966, 36105, 33669, 8838, 497, 2, 0, 1, 936, 34095, 206698, 342710, 184305, 29721, 1007, 2, 0
Offset: 1

Views

Author

Peter Luschny, Aug 16 2022

Keywords

Examples

			Triangle T(n, k) starts:                        [Row sums]
[1] [0]                                            [0]
[2] [1,   0]                                       [1]
[3] [1,   2,    0]                                 [3]
[4] [1,   8,    2,     0]                          [11]
[5] [1,  21,   25,     2,     0]                   [49]
[6] [1,  49,  152,    55,     2,    0]             [259]
[7] [1, 106,  697,   670,   117,    2,   0]        [1593]
[8] [1, 223, 2756,  5493,  2509,  243,   2, 0]     [11227]
[9] [1, 459, 9966, 36105, 33669, 8838, 497, 2, 0]  [89537]
		

Crossrefs

Cf. A356264 (partitions), A356291 (row sums).

Programs

  • SageMath
    # uses function A356264_row
    @cache
    def Pn(n: int, k: int) -> int:
        if k == 0: return 0
        if n == 0 or k == 1: return 1
        return Pn(n, k - 1) + Pn(n - k, k) if k <= n else Pn(n, k - 1)
    def reduce_parts(fun, n: int) -> list[int]:
        funn: list[int] = fun(n)
        return [sum(funn[Pn(n, k):Pn(n, k + 1)]) for k in range(n)]
    def reduce_partition_triangle(fun, n: int) -> list[list[int]]:
        return [reduce_parts(fun, k) for k in range(1, n)]
    def A356265_row(n: int) -> list[int]:
        return reduce_partition_triangle(A356264_row, n+1)[n-1]
    for n in range(1, 8):
        print(A356265_row(n))