A356266 Partition triangle read by rows, counting reducible permutations with weakly decreasing Lehmer code, refining triangle A356115.
1, 1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 3, 3, 3, 1, 0, 1, 4, 4, 2, 6, 12, 2, 4, 6, 1, 0, 1, 5, 5, 5, 10, 20, 10, 10, 10, 30, 10, 5, 10, 1, 0, 1, 6, 6, 6, 3, 15, 30, 30, 15, 15, 20, 60, 30, 60, 5, 15, 60, 30, 6, 15, 1
Offset: 0
Examples
[0] 1; [1] 1; [2] 0, 1; [3] 0, 1, 1; [4] 0, [1, 2], 1, 1; [5] 0, [1, 3], [3, 3], 3, 1; [6] 0, [1, 4, 4], [2, 6, 12], [2, 4], 6, 1; [7] 0, [1, 5, 5], [5, 10, 20, 10], [10, 10, 30], [10, 5], 10, 1; [8] 0, [1, 6, 6, 6],[3,15, 30, 30, 15],[15, 20, 60, 30, 60],[5,15,60],[30,6],15,1; Summing the bracketed terms reduces the triangle to A356115.
Links
- Peter Luschny, Permutations with Lehmer, a SageMath Jupyter Notebook.
Programs
-
SageMath
# uses functions perm_red_stats and reducible from A356264. @cache def A356266_row(n: int) -> list[int]: if n < 2: return [1] return [0] + [v[1] for v in perm_red_stats(n, reducible, weakly_decreasing)] def A356266(n: int, k: int) -> int: return A356266_row(n)[k] for n in range(8): print(A356266_row(n))