A356282 a(n) = Sum_{k=0..n} binomial(3*n, n-k) * p(k), where p(k) is the partition function A000041.
1, 4, 23, 141, 888, 5675, 36602, 237563, 1548995, 10135554, 66504699, 437359454, 2881641263, 19016505326, 125664684700, 831400186740, 5506287269802, 36501297800013, 242167539749593, 1607851773270316, 10682384379036741, 71016046921543562, 472376627798814453
Offset: 0
Keywords
Programs
-
Mathematica
Table[Sum[PartitionsP[k]*Binomial[3*n, n-k], {k, 0, n}], {n, 0, 30}]
-
PARI
a(n) = sum(k=0, n, binomial(3*n, n-k)*numbpart(k)); \\ Michel Marcus, Aug 02 2022
Formula
a(n) ~ c * 3^(3*n + 1/2) / (sqrt(Pi*n) * 2^(2*n + 1)), where c = Sum_{j>=0} p(j)/2^j = A065446 = 3.4627466194550636115379573429...