cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356288 Sum of numbers in n-th upward diagonal of triangle the sum of {1; 2,3; 4,5,6; 7,8,9,10; ...} and {1; 2,3; 3,4,5; 4,5,6,7; ...}.

Original entry on oeis.org

2, 4, 13, 20, 40, 55, 90, 116, 170, 210, 287, 344, 448, 525, 660, 760, 930, 1056, 1265, 1420, 1672, 1859, 2158, 2380, 2730, 2990, 3395, 3696, 4160, 4505, 5032, 5424, 6018, 6460, 7125, 7620, 8360, 8911, 9730, 10340, 11242, 11914, 12903, 13640, 14720, 15525, 16700
Offset: 1

Views

Author

Torlach Rush, Aug 02 2022

Keywords

Examples

			   2 = A079824(1) + A093005(1) =  1 + 1.
   4 = A079824(2) + A093005(2) =  2 + 2.
  13 = A079824(3) + A093005(3) =  7 + 6.
  20 = A079824(4) + A093005(4) = 12 + 8.
		

Crossrefs

Programs

  • Python
    def a(n): return (n * ((n + n % 2) // 2)) + (15 + 25*n + 15*(n**2) + 14*(n**3) - 3*(((-1)**n))*(5 + n*(3 + n))) // 96

Formula

a(n) = (n * ceiling(n/2)) + ((15 + 25*n + 15*n^2 + 14*n^3 - 3*(((-1)^n))*(5 + n*(3 + n))) / 96).
a(n) = A079824(n) + A093005(n).
G.f.: x*(2 + 2*x + 3*x^2 + x^3 - x^4)/((1 - x)^4*(1 + x)^3). - Stefano Spezia, Aug 19 2022