A356296 a(n) = Fibonacci(n)^2 mod n.
0, 1, 1, 1, 0, 4, 1, 1, 4, 5, 1, 0, 1, 1, 10, 9, 1, 10, 1, 5, 4, 1, 1, 0, 0, 1, 22, 9, 1, 10, 1, 25, 4, 1, 25, 0, 1, 1, 4, 25, 1, 22, 1, 9, 40, 1, 1, 0, 22, 25, 4, 9, 1, 10, 25, 49, 4, 1, 1, 0, 1, 1, 22, 25, 25, 64, 1, 9, 4, 15, 1, 0, 1, 1, 25, 9, 4, 64, 1, 25, 49, 1, 1, 72, 25, 1
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A356296 := proc(n) modp(combinat[fibonacci](n)^2,n) ; end proc: seq(A356296(n),n=1..120) ;
-
Mathematica
Array[PowerMod[Fibonacci[#], 2, #] &, 86] (* Michael De Vlieger, Aug 03 2022 *)
-
PARI
a(n) = lift(Mod(fibonacci(n), n)^2); \\ Michel Marcus, Aug 03 2022
-
Python
from sympy import fibonacci def a(n): return pow(fibonacci(n), 2, n) print([a(n) for n in range(1, 87)]) # Michael S. Branicky, Aug 04 2022
Formula
a(n) = A000045(n)^2 mod n.