cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356320 Length of the common prefix in binary expansions of n and A332221(n) = A156552(sigma(A005940(1+n))).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 2, 1, 4, 3, 1, 2, 3, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 6, 1, 2, 3, 2, 3, 1, 3, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 3, 3, 1, 4, 2, 3, 1, 1, 3, 3, 3, 6, 3, 2, 1, 3, 2, 1, 1, 2, 3, 2, 2, 2, 2, 2, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Aug 06 2022

Keywords

Crossrefs

Programs

  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    Abincompreflen(n, m) = { my(x=binary(n),y=binary(m),u=min(#x,#y)); for(i=1,u,if(x[i]!=y[i],return(i-1))); (u);};
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A347380(n) = Abincompreflen(A156552(n), A156552(sigma(n)));
    A356320(n) = A347380(A005940(1+n));
    \\ Alternatively as:
    A356320(n) = Abincompreflen(n, A156552(sigma(A005940(1+n))));