cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356321 a(n) = A347381(A005940(1+n)).

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 2, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 3, 4, 1, 2, 4, 3, 2, 4, 4, 4, 4, 4, 4, 3, 4, 2, 5, 4, 0, 5, 4, 3, 4, 3, 5, 3, 4, 4, 4, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 6, 4, 3, 4, 4, 6, 3, 5, 4, 6, 6, 4, 4, 4, 1, 4, 5, 6, 4, 5, 6, 6, 5, 4, 5, 5, 5, 5, 5, 3, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2022

Keywords

Comments

This sequence tells how near sigma(x) is to each x in Doudna-tree, A005940, with x iterating over the vertices of the tree in the breadth-first fashion. Positions that correspond to perfect numbers or (hypothetical) odd triperfect numbers get values 0 and 1 respectively. 1's occur also elsewhere. (Clarified Jul 03 2023)
See the illustrations in A347391 and in A347392.

Crossrefs

Programs

  • PARI
    A000523(n) = logint(n,2);
    Abincompreflen(x, y) = if(!x || !y, 0, my(xl=A000523(x), yl=A000523(y), s=min(xl,yl), k=0); x >>= (xl-s); y >>= (yl-s); while(s>=0 && !bitand(1,bitxor(x>>s,y>>s)), s--; k++); (k));
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A252464(n) = if(1==n,0,(bigomega(n) + A061395(n) - 1));
    A347381(n) = (A252464(n)-Abincompreflen(A156552(n), A156552(sigma(n))));
    A356321(n) = A347381(A005940(1+n));

Formula

a(n) = A070939(n) - A356320(n).