cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A356353 Numbers k such that A356352(k) <> 1.

Original entry on oeis.org

0, 3, 7, 12, 15, 31, 48, 51, 56, 60, 63, 127, 192, 195, 204, 207, 240, 243, 252, 255, 448, 455, 504, 511, 768, 771, 780, 783, 816, 819, 828, 831, 960, 963, 972, 975, 992, 1008, 1011, 1020, 1023, 2047, 3072, 3075, 3084, 3087, 3120, 3123, 3132, 3135, 3264, 3267
Offset: 1

Views

Author

Rémy Sigrist, Oct 15 2022

Keywords

Comments

Also, numbers whose binary expansions are juxtapositions of constant blocks of size g > 1.
A001196 and A097254 are subsequences.
There are A178472(k) terms with binary length k.

Examples

			The first terms, alongside their binary expansions and A356352(a(n)), are:
  n   a(n)  bin(a(n))   A356352(a(n))
  --  ----  ----------  -------------
   1     0           0              0
   2     3          11              2
   3     7         111              3
   4    12        1100              2
   5    15        1111              4
   6    31       11111              5
   7    48      110000              2
   8    51      110011              2
   9    56      111000              3
  10    60      111100              2
  11    63      111111              6
  12   127     1111111              7
  13   192    11000000              2
  14   195    11000011              2
  15   204    11001100              2
  16   207    11001111              2
		

Crossrefs

Programs

  • PARI
    is(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); gcd(r)!=1 }
    
  • PARI
    See Links section.
    
  • Python
    from math import gcd
    from itertools import groupby
    def ok(n):
        if n == 0: return True # by convention of A356352
        return gcd(*(len(list(g)) for k, g in groupby(bin(n)[2:]))) != 1
    print([k for k in range(3268) if ok(k)]) # Michael S. Branicky, Oct 15 2022
Showing 1-1 of 1 results.