cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356367 Number of plane partitions of n having exactly one row and one column, each of equal length.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 6, 11, 16, 26, 36, 58, 81, 122, 172, 251, 350, 502, 692, 972, 1332, 1842, 2499, 3414, 4592, 6200, 8277, 11064, 14656, 19424, 25544, 33584, 43880, 57274, 74362, 96429, 124468, 160422, 205942, 263938, 337083, 429768
Offset: 0

Views

Author

Jeremy Lovejoy, Oct 16 2022

Keywords

Comments

The empty plane partition of 0 contributes an initial term equal to 1.
Also equal to the number of unimodal compositions of n+1 where the peak appears exactly once and the number of parts to the left of the peak is equal to the number of parts to the right of the peak.

Examples

			For n = 7 the valid unimodal compositions of n+1=8 are (8), (1,6,1), (1,5,2), (2,5,1), (3,4,1), (1,4,3), (2,4,2), (1,1,4,1,1), (1,1,3,2,1), (1,2,3,1,1) and (1,1,1,2,1,1,1), and so a(7) = 11.
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1 + 1/Product[(1 - x^k)^2, {k, 1, nmax}] * Sum[(-1)^(k + r + 1) * x^(k*(k + 1)/2 + r*(r + 1)/2 + 2*k*r)*(1 - x^r), {r, 0, nmax}, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 28 2023 *)

Formula

G.f.: 1 + (1/Product_{n>=1}(1-x^n)^2)*Sum_{r,n>=0}(-1)^(n+r+1)*x^(n*(n+1)/2 + r*(r+1)/2 + 2*n*r)*(1-x^r).