A356367 Number of plane partitions of n having exactly one row and one column, each of equal length.
1, 1, 1, 2, 2, 5, 6, 11, 16, 26, 36, 58, 81, 122, 172, 251, 350, 502, 692, 972, 1332, 1842, 2499, 3414, 4592, 6200, 8277, 11064, 14656, 19424, 25544, 33584, 43880, 57274, 74362, 96429, 124468, 160422, 205942, 263938, 337083, 429768
Offset: 0
Keywords
Examples
For n = 7 the valid unimodal compositions of n+1=8 are (8), (1,6,1), (1,5,2), (2,5,1), (3,4,1), (1,4,3), (2,4,2), (1,1,4,1,1), (1,1,3,2,1), (1,2,3,1,1) and (1,1,1,2,1,1,1), and so a(7) = 11.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- B. Kim and J. Lovejoy, The rank of a unimodal sequence and a partial theta identity of Ramanujan, Int. J. Number Theory 10 (2014), 1081-1098.
Programs
-
Mathematica
nmax = 50; CoefficientList[Series[1 + 1/Product[(1 - x^k)^2, {k, 1, nmax}] * Sum[(-1)^(k + r + 1) * x^(k*(k + 1)/2 + r*(r + 1)/2 + 2*k*r)*(1 - x^r), {r, 0, nmax}, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 28 2023 *)
Formula
G.f.: 1 + (1/Product_{n>=1}(1-x^n)^2)*Sum_{r,n>=0}(-1)^(n+r+1)*x^(n*(n+1)/2 + r*(r+1)/2 + 2*n*r)*(1-x^r).
Comments