A356395 Nonnegative numbers k such that the negaFibonacci representation of k (A215022(k)) is palindromic.
0, 1, 3, 6, 8, 11, 14, 21, 24, 35, 40, 50, 55, 58, 66, 82, 90, 108, 118, 126, 144, 147, 176, 189, 205, 234, 247, 273, 286, 296, 325, 338, 364, 377, 380, 401, 443, 464, 511, 527, 548, 590, 611, 658, 684, 705, 752, 762, 783, 825, 846, 893, 919, 940, 987, 990
Offset: 1
Examples
The first terms are: n a(n) A215022(a(n)) -- ---- ------------- 1 0 0 2 1 1 3 3 101 4 6 10001 5 8 10101 6 11 1001001 7 14 1000001 8 21 1010101 9 24 100101001 10 35 100000001
Links
Programs
-
PARI
is(n) = { my (v=0, neg=0, pos=0, f); for (e=0, oo, f=fibonacci(-1-e); if (f<0, neg+=f, pos+=f); if (neg <=n && n <= pos, while (n, if (f<0, neg-=f, pos-=f); if (neg > n || n > pos, v+=2^e; n-=f); f=fibonacci(-1-e--)); my (b=binary(v)); return (b==Vecrev(b)))) }
Comments