A356411 Sum of powers of roots of x^3 - x^2 - x - 3.
3, 1, 3, 13, 19, 41, 99, 197, 419, 913, 1923, 4093, 8755, 18617, 39651, 84533, 180035, 383521, 817155, 1740781, 3708499, 7900745, 16831587, 35857829, 76391651, 162744241, 346709379, 738628573, 1573570675, 3352327385, 7141783779
Offset: 0
Examples
For n=3, a(3) = (2.130395...)^3 + (-0.5651977... - i*1.0434274...)^3 + (-0.5651977... + i*1.0434274...)^3 = 13.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,3).
Programs
-
Mathematica
LinearRecurrence[{1, 1, 3}, {3, 1, 3}, 40]
-
PARI
polsym(x^3 - x^2 - x - 3, 35) \\ Joerg Arndt, Aug 11 2022
Formula
a(n) = a(n-1) + a(n-2) + 3*a(n-3) with a(0)=3, a(1)=1, a(2) = 3.
G.f.: (3 - 2*x - x^2)/(1 - x - x^2 - 3*x^3).
Comments