cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A356414 Number k such that k and k+1 both have an equal sum of even and odd exponents in their prime factorization (A356413).

Original entry on oeis.org

819, 1035, 1196, 1274, 1275, 1449, 1665, 1924, 1925, 1988, 2324, 2331, 2540, 3068, 3195, 3324, 3339, 3549, 3555, 3626, 3717, 4164, 4220, 4235, 4556, 4598, 4635, 4675, 4796, 5084, 5525, 5634, 5660, 6003, 6027, 6068, 6164, 6363, 6740, 6867, 6908, 7028, 7227, 7275
Offset: 1

Views

Author

Amiram Eldar, Aug 06 2022

Keywords

Comments

Numbers k such that A350386(k) = A350387(k) and A350386(k+1) = A350387(k+1).

Examples

			819 is a term since A350386(819) = A350387(819) = 2 and A350386(820) = A350387(820) = 2.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (-1)^e*e; q[1] = True; q[n_] := Plus @@ f @@@ FactorInteger[n] == 0; Select[Range[10^4], q[#] && q[# + 1] &]
  • PARI
    is(n) = {my(f = factor(n)); sum(i = 1, #f~, (-1)^f[i,2]*f[i,2]) == 0};
    is1 = is(1); for(k = 2, 10^4, is2 = is(k); if(is1 && is2, print1(k-1,", ")); is1 = is2);

A356416 a(n) is the least start of exactly n consecutive numbers that have an equal sum of even and odd exponents in their prime factorization (A356413), or -1 if no such run of consecutive numbers exists.

Original entry on oeis.org

1, 819, 1274, 19940, 204323, 149228720, 3144583275
Offset: 1

Views

Author

Amiram Eldar, Aug 06 2022

Keywords

Comments

a(8) > 6.5*10^10, if it exists.
a(8) <= 604912797077420. - David A. Corneth, Aug 06 2022

Examples

			a(2) = 819 since 819 = 3^2 * 7 * 13 and 820 = 2^2 * 5 * 41 both have an equal sum of even and odd exponents (2) in their prime factorization, 818 and 821 have no even exponent, and 819 is the least number with this property.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (-1)^e*e; q[1] = True; q[n_] := Plus @@ f @@@ FactorInteger[n] == 0; seq[len_, nmax_] := Module[{s = Table[0, {len}], v = {1}, n = 2, c = 0, m}, While[c <= len && n <= nmax, If[q[n], v = Join[v, {n}], m = Length[v]; v = {}; If[0 <= m <= len && s[[m]] == 0, c++; s[[m]] = n - m]]; n++]; s]; seq[4, 2*10^4]

A371600 Numbers of least prime signature (A025487) whose prime factorization has equal sum of even and odd exponents.

Original entry on oeis.org

1, 60, 2160, 12600, 18480, 77760, 180180, 216000, 453600, 665280, 2646000, 2799360, 3880800, 7776000, 10810800, 16329600, 16336320, 23950080, 32016600, 45360000, 66528000, 95256000, 100776960, 139708800, 214414200, 232792560, 279936000, 389188800, 555660000, 587865600
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2024

Keywords

Examples

			The prime signatures of the first 12 terms are:
   n     a(n)     signature  A350386(a(n)) = A350387(a(n))
  --  -------  ------------  -------------   -------------
   1        1            {}             0                0
   2       60       {1,1,2}             2            1+1=2
   3     2160       {1,3,4}             4            1+3=4
   4    12600     {1,2,2,3}         2+2=4            1+3=4
   5    18480   {1,1,1,1,4}             4        1+1+1+1=4
   6    77760       {1,5,6}             6            1+5=6
   7   180180 {1,1,1,1,2,2}         2+2=4        1+1+1+1=4
   8   216000       {3,3,6}             6            3+3=6
   9   453600     {1,2,4,5}         2+4=6            1+5=6
  10   665280   {1,1,1,3,6}             6        1+1+1+3=6
  11  2646000     {2,3,3,4}         2+4=6            3+3=6
  12  2799360       {1,7,8}             8            1+7=8
		

Crossrefs

Intersection of A025487 and A356413.

Programs

  • Mathematica
    fun[p_, e_] := (-1)^e * e; q[n_] := Module[{f = FactorInteger[n]}, n == 1 || (f[[-1, 1]] == Prime[Length[f]] && Plus @@ fun @@@ f == 0 && Max@ Differences[f[[;; , 2]]] < 1)]; Select[Range[4*10^6], q]
  • PARI
    is(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); n == 1 || (sum(i = 1, #e, (-1)^e[i] * e[i]) == 0 && e == vecsort(e, , 4) && primepi(p[#p]) == #p);}
Showing 1-3 of 3 results.