A356433 Numbers k such that, in the prime factorization of k, the least common multiple of the exponents equals the least common multiple of the prime factors.
1, 4, 27, 72, 108, 192, 576, 800, 1458, 1728, 2916, 3125, 5120, 5832, 6272, 12500, 21600, 25600, 30375, 36000, 46656, 48600, 77760, 84375, 114688, 116640, 121500, 138240, 169344, 225000, 247808, 337500, 384000, 388800, 395136, 583200, 600000, 653184, 691200, 750141, 802816, 823543, 857304, 979776
Offset: 1
Keywords
Examples
576 = 2^6 * 3^2, lcm(2,3) = 6 = lcm(6,2), hence 576 is a term.
Crossrefs
Programs
-
Mathematica
Select[Range[10^6], Equal @@ LCM @@ FactorInteger[#] &] (* Amiram Eldar, Aug 07 2022 *)
-
PARI
isok(k) = my(f=factor(k)); lcm(f[,1]) == lcm(f[,2]); \\ Michel Marcus, Aug 07 2022
-
Python
from math import lcm from sympy import factorint def ok(n): f = factorint(n); return lcm(*f.keys()) == lcm(*f.values()) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Aug 07 2022
Comments