A356457 a(n) is the least number that can be written in exactly n ways as p*q + q*r + p*r where (p,q,r) is an unordered triple of distinct primes.
1, 31, 71, 151, 191, 491, 671, 887, 311, 1151, 1391, 1751, 1031, 2711, 2831, 3911, 1991, 3191, 5351, 9551, 7031, 20951, 8951, 8711, 10631, 5591, 15431, 10391, 15791, 28031, 20471, 17111, 48191, 27191, 31391, 39191, 52631, 35591, 42311, 61871, 50951, 92231, 70391, 108071, 99431, 103991, 96071
Offset: 0
Keywords
Examples
a(3) = 151 because 151 is the first number that can be written in exactly 3 ways: 151 = 3*7 + 3*13 + 7*13 = 3*5 + 3*17 + 5*17 = 2*3 + 2*29 + 3*29.
Links
- Robert Israel, Table of n, a(n) for n = 0..319
Programs
-
Maple
M:= 10^5: # to get terms before the first term > M V:= Vector(M): p:= 1: do p:= nextprime(p); if 5*p+6 > M then break fi; q:= 1; do q:= nextprime(q); if q = p or p*q + 2*(p+q) > M then break fi; r:= 1; do r:= nextprime(r); if r = q then break fi; v:= p*q + p*r + q*r; if v > M then break fi; V[v]:= V[v]+1; od od od: m:= max(V): W:= Array(0..m): for i from 1 to M do if W[V[i]] = 0 then W[V[i]]:= i fi od: if member(0,W,'k') then m:= k-1 fi: convert(W[0..m],list);
Comments