cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A355886 a(n) = n! * Sum_{k=1..n} floor(n/k)/k!.

Original entry on oeis.org

1, 5, 22, 125, 746, 5677, 44780, 420401, 4206970, 47543141, 562891352, 7573655905, 104684547566, 1596368400005, 25482043382476, 439969180782017, 7835163501390290, 151712475696833221, 3004182138648663200, 63854641556089628801, 1400563708969910620822
Offset: 1

Views

Author

Seiichi Manyama, Jul 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! * Sum[Floor[n/k]/k!, {k,1,n}], {n,1,25}] (* Vaclav Kotesovec, Aug 11 2025 *)
  • PARI
    a(n) = n!*sum(k=1, n, n\k/k!);
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, x^k/(k!*(1-x^k)))/(1-x)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=1, N, exp(x^k)-1)/(1-x)))
    
  • PARI
    a(n) = n!*sum(k=1, n, sumdiv(k, d, 1/d!)); \\ Seiichi Manyama, Aug 08 2022

Formula

E.g.f.: (1/(1-x)) * Sum_{k>0} x^k/(k! * (1 - x^k)).
E.g.f.: (1/(1-x)) * Sum_{k>0} (exp(x^k) - 1).
a(n) = n! * Sum_{k=1..n} Sum_{d|k} 1/d! = n! * Sum_{k=1..n} A057625(k)/k!. - Seiichi Manyama, Aug 08 2022
a(n) ~ A229837 * n! * n. - Vaclav Kotesovec, Aug 11 2025

A356461 Expansion of e.g.f. ( Product_{k>0} B(x^k)^k )^(1/(1-x)) where B(x) = exp(exp(x)-1) = e.g.f. of Bell numbers.

Original entry on oeis.org

1, 1, 8, 62, 631, 7417, 104489, 1648845, 29319588, 572982162, 12250559615, 283321630605, 7053444523393, 187711377451249, 5317981377046420, 159652557864884330, 5061465465801168419, 168886786171198864725, 5914650120884760212977, 216844308186908733542877
Offset: 0

Views

Author

Seiichi Manyama, Aug 08 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, exp(exp(x^k)-1)^k)^(1/(1-x))))
    
  • PARI
    a356459(n) = n!*sum(k=1, n, sumdiv(k, d, d/(k/d)!));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=1, i, a356459(j)*binomial(i-1, j-1)*v[i-j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=1..n} A356459(k) * binomial(n-1,k-1) * a(n-k).
Showing 1-2 of 2 results.