A356465 The number of unit squares enclosed by the rectangular spiral of which the n-th side has length prime(n).
0, 2, 6, 12, 27, 59, 113, 179, 257, 359, 497, 747, 963, 1227, 1577, 1799, 2081, 2611, 3223, 3663, 4167, 4817, 5231, 5847, 6657, 7527, 8801, 9869, 10439, 11057, 11699, 12425, 14675, 16817, 18027, 19139, 20855, 22595, 23803, 25711, 27321, 29011, 31063, 32495
Offset: 0
Keywords
Links
Crossrefs
Cf. A000040.
Programs
-
Mathematica
a[4]:=27; a[n_]:=a[n]=a[n-1]+(Prime[n]-Prime[n-2]+Prime[n-4])(Prime[n-1]-Prime[n-3]); Join[{0,2,6,12,27},Table[a[n],{n,5,45}]] (* Stefano Spezia, Aug 09 2022 *)
-
Python
from sympy import prime as p a = [0,2,6,12,27] #first 4 area values area = 27 for n in range(5,44+1): darea = (p(n) - p(n-2) + p(n-4)) * (p(n-1) - p(n-3)) area += darea a.append(area) print('a(n)=',a)
Formula
a(n) = a(n-1) +(prime(n) - prime(n-2) + prime(n-4))*(prime(n-1) - prime(n-3)) for n > 4.
Comments