A356471 First of 5 consecutive primes p,q,r,s,t such that p*q+ q*r + r*s + s*t + t*p is prime.
19, 41, 47, 53, 157, 199, 491, 557, 563, 571, 647, 1063, 1091, 1097, 1109, 1163, 1171, 1217, 1259, 1279, 1361, 1367, 1487, 1601, 1621, 1753, 1901, 1951, 2053, 2161, 2383, 2441, 2549, 2777, 2851, 2879, 2887, 2953, 2957, 3041, 3061, 3067, 3163, 3191, 3491, 3499, 3719, 3881, 4003, 4007, 4013, 4093
Offset: 1
Keywords
Examples
a(3) = 47 is a term because 47, 53, 59, 61, 67 are 5 consecutive primes with 47*53 + 53*59 + 59*61 + 61*67 + 67*47 = 16453 prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: count:= 0: P:= Vector(5,ithprime): while count < 100 do x:= P[1]*P[2]+P[2]*P[3]+P[3]*P[4]+P[4]*P[5]+P[5]*P[1]; if isprime(x) then R:= R, P[1]; count:= count+1 fi; P[1..4]:= P[2..5]; P[5]:= nextprime(P[5]); od: R;
-
Mathematica
Select[Partition[Prime[Range[600]], 5, 1], PrimeQ[Total[# * RotateLeft[#]]] &][[;; , 1]] (* Amiram Eldar, Aug 08 2022 *)
-
Python
from itertools import islice from sympy import isprime, nextprime def agen(): p, q, r, s, t = 2, 3, 5, 7, 11 while True: if isprime(p*q + q*r + r*s + s*t + t*p): yield p p, q, r, s, t = q, r, s, t, nextprime(t) print(list(islice(agen(), 52))) # Michael S. Branicky, Aug 08 2022