cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356507 G.f.: Sum_{n>=0} x^(n*(n+1)/2) * P(x)^n, where P(x) is the partition function (A000041).

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 18, 34, 60, 109, 192, 339, 591, 1027, 1768, 3032, 5165, 8755, 14766, 24786, 41417, 68912, 114193, 188478, 309939, 507821, 829197, 1349437, 2189105, 3540253, 5708422, 9177939, 14715345, 23530180, 37527544, 59700283, 94741244, 149991677
Offset: 0

Views

Author

Paul D. Hanna, Aug 11 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 10*x^5 + 18*x^6 + 34*x^7 + 60*x^8 + 109*x^9 + 192*x^10 + 339*x^11 + 591*x^12 + 1027*x^13 + 1768*x^14 + ...
such that
A(x) = 1 + x*P(x) + x^3*P(x)^2 + x^6*P(x)^3 + x^10*P(x)^4 + x^15*P(x)^5 + x^21*P(x)^6 + ... + x^(n*(n+1)/2) * P(x)^n + ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0,n, x^(m*(m+1)/2) / prod(k=1,n,(1 - x^k +x*O(x^n))^m))); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n equals the following expressions involving P(x), the partition function (A000041).
(1) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * P(x)^n.
(2) A(x) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k>=1} (1 - x^k)^n.
(3) A(x) = Sum_{n>=0} x^n * P(x)^n * Product_{k=1..n} (1 - x^(2*k-1)*P(x))/(1 - x^(2*k)*P(x)).
(4) A(x) = 1/(1 - x*P(x)/(1 + x*(1-x)*P(x)/(1 - x^3*P(x)/(1 + x^2*(1-x^2)*P(x)/(1 - x^5*P(x)/(1 + x^3*(1-x^3)*P(x)/(1 - x^7*P(x)/(1 + x^4*(1-x^4)*P(x)/(1 - ...))))))))), a continued fraction.