A356507 G.f.: Sum_{n>=0} x^(n*(n+1)/2) * P(x)^n, where P(x) is the partition function (A000041).
1, 1, 1, 3, 5, 10, 18, 34, 60, 109, 192, 339, 591, 1027, 1768, 3032, 5165, 8755, 14766, 24786, 41417, 68912, 114193, 188478, 309939, 507821, 829197, 1349437, 2189105, 3540253, 5708422, 9177939, 14715345, 23530180, 37527544, 59700283, 94741244, 149991677
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 10*x^5 + 18*x^6 + 34*x^7 + 60*x^8 + 109*x^9 + 192*x^10 + 339*x^11 + 591*x^12 + 1027*x^13 + 1768*x^14 + ... such that A(x) = 1 + x*P(x) + x^3*P(x)^2 + x^6*P(x)^3 + x^10*P(x)^4 + x^15*P(x)^5 + x^21*P(x)^6 + ... + x^(n*(n+1)/2) * P(x)^n + ... where P(x) is the partition function and begins P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..820
Programs
-
PARI
{a(n) = my(A = sum(m=0,n, x^(m*(m+1)/2) / prod(k=1,n,(1 - x^k +x*O(x^n))^m))); polcoeff(A,n)} for(n=0,30,print1(a(n),", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n equals the following expressions involving P(x), the partition function (A000041).
(1) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * P(x)^n.
(2) A(x) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k>=1} (1 - x^k)^n.
(3) A(x) = Sum_{n>=0} x^n * P(x)^n * Product_{k=1..n} (1 - x^(2*k-1)*P(x))/(1 - x^(2*k)*P(x)).
(4) A(x) = 1/(1 - x*P(x)/(1 + x*(1-x)*P(x)/(1 - x^3*P(x)/(1 + x^2*(1-x^2)*P(x)/(1 - x^5*P(x)/(1 + x^3*(1-x^3)*P(x)/(1 - x^7*P(x)/(1 + x^4*(1-x^4)*P(x)/(1 - ...))))))))), a continued fraction.