cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A356499 G.f. A(x) satisfies: x = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)).

Original entry on oeis.org

1, 1, 3, 10, 32, 108, 382, 1419, 5437, 21288, 84618, 340499, 1384711, 5683834, 23520471, 98018975, 410998473, 1732666697, 7339612244, 31224662178, 133353750962, 571527895700, 2457293364403, 10596053295516, 45813536708704, 198570001079591, 862624530201300
Offset: 0

Views

Author

Paul D. Hanna, Aug 11 2022

Keywords

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 32*x^4 + 108*x^5 + 382*x^6 + 1419*x^7 + 5437*x^8 + 21288*x^9 + 84618*x^10 + 340499*x^11 + 1384711*x^12 + ...
such that
x = (1 - x*A(x))*(1 - 1/A(x)) * (1 - x^2*A(x))*(1 - x/A(x)) * (1 - x^3*A(x))*(1 - x^2/A(x)) * (1 - x^4*A(x))*(1 - x^3/A(x)) * (1 - x^5*A(x))*(1 - x^4/A(x)) * ...
also,
x/P(x) = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ...
where P(x) is the partition function and begins
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + ... + A000041(n)*x^n + ...
and
x/P(x) = x - x^2 - x^3 + x^6 + x^8 - x^13 - x^16 + x^23 + x^27 - x^36 - x^41 + x^52 + x^58 - x^71 - x^78 + x^93 + x^101 + ...
The following expressions involving g.f. A(x) are all equal:
B(x) = 1 / Product_{n>=1} (1 - x^n*A(x)),
B(x) = (1/x) * Product_{n>=1} (1 - x^(n-1)/A(x)),
B(x) = Sum_{n>=0} x^n * A(x)^n / Product_{k=1..n} (1 - x^k),
B(x) = ((1 - 1/A(x))/x) / [Sum_{n>=0} (x/A(x))^n/Product_{k=1..n} (1 - x^k)],
where
B(x) = 1 + x + 3*x^2 + 9*x^3 + 31*x^4 + 109*x^5 + 396*x^6 + 1472*x^7 + 5613*x^8 + 21868*x^9 + 86690*x^10 + 348422*x^11 + 1416090*x^12 + 5809655*x^13 + 24028116*x^14 + 100081147*x^15 + ...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constants {d,c}: *) {1/r, Sqrt[(-r)*(((-1 + s)*s^2*(-1 + r*s)* Log[r]*((-1 + r*s) * QPochhammer[s, r]*((-1 + s)*Log[1 - r] + Log[r] + (-1 + s)*QPolyGamma[0, Log[s]/Log[r], r]) - r*s*Log[r]*QPochhammer[s, r]^2*Derivative[0, 1][QPochhammer][1/(r*s), r] + r*(-1 + s)*(-1 + r*s)*Log[r] * Derivative[0, 1][QPochhammer][s, r])) / (2* Pi*(r*QPochhammer[s, r]*(-s*(1 + r - 4*r*s + r*(1 + r)*s^2)* Log[r]^2 + (-1 + s)^2*(-1 + r*s)^2* QPolyGamma[1, Log[s]/Log[r], r] + (-1 + s)^2*(-1 + r*s)^2 * QPolyGamma[1, -1 - Log[s]/Log[r], r]))))]} /. FindRoot[{s*QPochhammer[1/(r*s), r]* QPochhammer[s, r] == (s - 1)*(1 - r*s), (-1 + s)*(-1 + r*s)*(QPolyGamma[0, Log[s]/Log[r], r] - QPolyGamma[0, -1 - Log[s]/Log[r], r]) == (1 - r*s^2)*Log[r]}, {r, 1/4}, {s, 2}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Oct 04 2023 *)
  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
    A[#A] = polcoeff( x - prod(n=1,#A, (1 - x^n*Ser(A)) * (1 - x^(n-1)/Ser(A)) ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = my(A=[1],t,P=prod(k=1,n,1-x^k +x*O(x^n))); for(i=1,n, A=concat(A,0); t = ceil(sqrt(2*n+9));
    A[#A] = polcoeff( x*P - sum(m=-t,t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1));A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) x/P(x) = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n, where P(x) = 1/Product_{n>=1} (1 - x^n) is the partition function (A000041).
(2) x = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)), by the Jacobi triple product identity.
a(n) ~ c * d^n / n^(3/2), where d = 4.6003483603736784205277234... and c = 0.69610758028428020320488... - Vaclav Kotesovec, Oct 04 2023
Showing 1-1 of 1 results.