cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356511 Total number of distinct numbers that can be obtained by starting with 1 and applying the "Choix de Bruxelles", version 2 operation at most n times in duodecimal (base 12).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 19, 45, 107, 275, 778, 2581, 10170, 45237, 222859, 1191214, 6887258, 42894933, 287397837
Offset: 0

Views

Author

J. Conrad, Aug 09 2022

Keywords

Examples

			For n=4, the a(4) = 5 numbers obtained are (in base 12): 1, 2, 4, 8, 14.
For n=5, they expand to a(5) = 9 numbers (in base 12): 1, 2, 4, 8, 12, 14, 18, 24, 28.
		

Crossrefs

Cf. A323289 (decimal).

Programs

  • Python
    # See Conrad link.
    
  • Python
    from itertools import islice
    from sympy.ntheory import digits
    def fd12(d): return sum(12**i*di for i, di in enumerate(d[::-1]))
    def cdb2(n):
        d, out = digits(n, 12)[1:], {n}
        for l in range(1, len(d)+1):
            for i in range(len(d)+1-l):
                if d[i] == 0: continue
                t = fd12(d[i:i+l])
                out.add(fd12(d[:i] + digits(2*t, 12)[1:] + d[i+l:]))
                if t&1 == 0:
                    out.add(fd12(d[:i] + digits(t//2, 12)[1:] + d[i+l:]))
        return out
    def agen():
        reach, expand = {1}, [1]
        while True:
            yield len(reach)
            newreach = {r for q in expand for r in cdb2(q) if r not in reach}
            reach |= newreach
            expand = list(newreach)
    print(list(islice(agen(), 14))) # Michael S. Branicky, Aug 17 2022

Extensions

a(16)-a(18) from Michael S. Branicky, Aug 17 2022