cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356517 Square array A(n, k), n >= 2, k >= 0, read by antidiagonals upwards; A(n, k) is the least integer with sum of digits k in base n.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 2, 7, 0, 1, 2, 5, 15, 0, 1, 2, 3, 8, 31, 0, 1, 2, 3, 7, 17, 63, 0, 1, 2, 3, 4, 11, 26, 127, 0, 1, 2, 3, 4, 9, 15, 53, 255, 0, 1, 2, 3, 4, 5, 14, 31, 80, 511, 0, 1, 2, 3, 4, 5, 11, 19, 47, 161, 1023, 0, 1, 2, 3, 4, 5, 6, 17, 24, 63, 242, 2047
Offset: 2

Views

Author

Rémy Sigrist, Aug 10 2022

Keywords

Comments

The expansion of A(n, k) in base n is:
q n-1 ... n-1
<- p times ->
where q = k mod (n-1) and p = floor(k / (n-1)).

Examples

			Array A(n, k) begins:
  n\k|  0  1  2  3   4   5   6    7    8    9    10    11    12
  ---+---------------------------------------------------------
    2|  0  1  3  7  15  31  63  127  255  511  1023  2047  4095
    3|  0  1  2  5   8  17  26   53   80  161   242   485   728
    4|  0  1  2  3   7  11  15   31   47   63   127   191   255
    5|  0  1  2  3   4   9  14   19   24   49    74    99   124
    6|  0  1  2  3   4   5  11   17   23   29    35    71   107
    7|  0  1  2  3   4   5   6   13   20   27    34    41    48
    8|  0  1  2  3   4   5   6    7   15   23    31    39    47
    9|  0  1  2  3   4   5   6    7    8   17    26    35    44
   10|  0  1  2  3   4   5   6    7    8    9    19    29    39
Array A(n, k) begins (with values given in base n):
  n\k|  0  1   2    3     4      5       6        7         8          9
  ---+------------------------------------------------------------------
    2|  0  1  11  111  1111  11111  111111  1111111  11111111  111111111
    3|  0  1   2   12    22    122     222     1222      2222      12222
    4|  0  1   2    3    13     23      33      133       233        333
    5|  0  1   2    3     4     14      24       34        44        144
    6|  0  1   2    3     4      5      15       25        35         45
    7|  0  1   2    3     4      5       6       16        26         36
    8|  0  1   2    3     4      5       6        7        17         27
    9|  0  1   2    3     4      5       6        7         8         18
   10|  0  1   2    3     4      5       6        7         8          9
		

Crossrefs

Programs

  • PARI
    A(n,k) = { (1+k%(n-1))*n^(k\(n-1))-1 }
    
  • Python
    def A(n,k): return (1+(k % (n-1)))*n**(k//(n-1))-1

Formula

A(2, k) = 2^k - 1.
A(3, k) = A062318(k+1).
A(4, k) = A180516(k+1).
A(5, k) = A181287(k+1).
A(6, k) = A181288(k+1).
A(7, k) = A181303(k+1).
A(8, k) = A165804(k+1).
A(9, k) = A140576(k+1).
A(10, k) = A051885(k).
A(n, 0) = 0.
A(n, 1) = 1.
A(n, k) = k iff k < n.
A(n, n) = 2*n - 1.
A(n, n+1) = 3*n - 1 for any n > 2.