A356517 Square array A(n, k), n >= 2, k >= 0, read by antidiagonals upwards; A(n, k) is the least integer with sum of digits k in base n.
0, 0, 1, 0, 1, 3, 0, 1, 2, 7, 0, 1, 2, 5, 15, 0, 1, 2, 3, 8, 31, 0, 1, 2, 3, 7, 17, 63, 0, 1, 2, 3, 4, 11, 26, 127, 0, 1, 2, 3, 4, 9, 15, 53, 255, 0, 1, 2, 3, 4, 5, 14, 31, 80, 511, 0, 1, 2, 3, 4, 5, 11, 19, 47, 161, 1023, 0, 1, 2, 3, 4, 5, 6, 17, 24, 63, 242, 2047
Offset: 2
Examples
Array A(n, k) begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 ---+--------------------------------------------------------- 2| 0 1 3 7 15 31 63 127 255 511 1023 2047 4095 3| 0 1 2 5 8 17 26 53 80 161 242 485 728 4| 0 1 2 3 7 11 15 31 47 63 127 191 255 5| 0 1 2 3 4 9 14 19 24 49 74 99 124 6| 0 1 2 3 4 5 11 17 23 29 35 71 107 7| 0 1 2 3 4 5 6 13 20 27 34 41 48 8| 0 1 2 3 4 5 6 7 15 23 31 39 47 9| 0 1 2 3 4 5 6 7 8 17 26 35 44 10| 0 1 2 3 4 5 6 7 8 9 19 29 39 Array A(n, k) begins (with values given in base n): n\k| 0 1 2 3 4 5 6 7 8 9 ---+------------------------------------------------------------------ 2| 0 1 11 111 1111 11111 111111 1111111 11111111 111111111 3| 0 1 2 12 22 122 222 1222 2222 12222 4| 0 1 2 3 13 23 33 133 233 333 5| 0 1 2 3 4 14 24 34 44 144 6| 0 1 2 3 4 5 15 25 35 45 7| 0 1 2 3 4 5 6 16 26 36 8| 0 1 2 3 4 5 6 7 17 27 9| 0 1 2 3 4 5 6 7 8 18 10| 0 1 2 3 4 5 6 7 8 9
Links
- Andrew Howroyd, Table of n, a(n) for n = 2..1276 (first 50 antidiagonals)
Crossrefs
Programs
-
PARI
A(n,k) = { (1+k%(n-1))*n^(k\(n-1))-1 }
-
Python
def A(n,k): return (1+(k % (n-1)))*n**(k//(n-1))-1
Formula
A(2, k) = 2^k - 1.
A(3, k) = A062318(k+1).
A(4, k) = A180516(k+1).
A(5, k) = A181287(k+1).
A(6, k) = A181288(k+1).
A(7, k) = A181303(k+1).
A(8, k) = A165804(k+1).
A(9, k) = A140576(k+1).
A(10, k) = A051885(k).
A(n, 0) = 0.
A(n, 1) = 1.
A(n, k) = k iff k < n.
A(n, n) = 2*n - 1.
A(n, n+1) = 3*n - 1 for any n > 2.
Comments