cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356543 a(n) = Sum_{d|n} (d!)^(n/d-1).

Original entry on oeis.org

1, 2, 2, 4, 2, 12, 2, 34, 38, 138, 2, 1546, 2, 5106, 15698, 54274, 2, 889314, 2, 5689090, 25448258, 39917826, 2, 2486196610, 207360002, 6227024898, 131683574018, 215393466370, 2, 14769495662082, 2, 86475697160194, 1593350982706178, 355687428161538, 648227266560002
Offset: 1

Views

Author

Seiichi Manyama, Aug 11 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (#)!^(n/# - 1) &]; Array[a, 35] (* Amiram Eldar, Aug 30 2023 *)
  • PARI
    a(n) = sumdiv(n, d, d!^(n/d-1));
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-k!*x^k)))

Formula

G.f.: Sum_{k>=1} x^k/(1 - k! * x^k).
If p is prime, a(p) = 2.

A356542 Expansion of e.g.f. Product_{k>0} 1/(1 - k! * x^k)^(1/k!).

Original entry on oeis.org

1, 1, 4, 18, 132, 900, 11160, 100800, 1809360, 25053840, 608428800, 8610386400, 469291838400, 7110609105600, 404607162960000, 13958116204032000, 821937470818464000, 17420311428103584000, 2860701872247483264000, 60029296274562398784000
Offset: 0

Views

Author

Seiichi Manyama, Aug 11 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-k!*x^k)^(1/k!))))
    
  • PARI
    a356541(n) = sumdiv(n, d, d*d!^(n/d-1));
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, a356541(j)*v[i-j+1]/(i-j)!)); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} A356541(k) * a(n-k)/(n-k)!.
Showing 1-2 of 2 results.