A356545 Triangle read by rows. T(n, k) are the coefficients of polynomials p_n(x) based on the Eulerian numbers of first order representing the Bernoulli numbers as B_n = p_n(1) / (n + 1)!.
1, 1, 0, 2, -1, 0, 6, -8, 2, 0, 24, -66, 44, -6, 0, 120, -624, 792, -312, 24, 0, 720, -6840, 14496, -10872, 2736, -120, 0, 5040, -86400, 285840, -347904, 171504, -28800, 720, 0, 40320, -1244880, 6181920, -11245680, 8996544, -3090960, 355680, -5040, 0
Offset: 0
Examples
The table T(n, k) of the coefficients, sorted in ascending order, starts: [0] 1; [1] 1, 0; [2] 2, -1, 0; [3] 6, -8, 2, 0; [4] 24, -66, 44, -6, 0; [5] 120, -624, 792, -312, 24, 0; [6] 720, -6840, 14496, -10872, 2736, -120, 0; [7] 5040, -86400, 285840, -347904, 171504, -28800, 720, 0; [8] 40320, -1244880, 6181920, -11245680, 8996544, -3090960, 355680, -5040, 0;
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 268. (Since the thirty-fourth printing, Jan. 2022, with B(1) = 1/2.)
Links
- Ira Gessel, Eulerian number identity, MathOverflow, Apr 2019.
- Peter Luschny, How are the Eulerian numbers of the first-order related to the Eulerian numbers of the second-order?, MathOverflow, Feb. 2021.
- Peter Luschny, Eulerian polynomials.
- Oskar Schlömilch, Ueber die Bernoulli'sche Funktion und deren Gebrauch bei der Entwickelung halbconvergenter Reihen, Zeitschrift fuer Mathematik und Pysik, vol. 1 (1856), p. 193-211.
- Julius Worpitsky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik (Crelle), 94 (1883), 203-232. See page 22, first formula.
Crossrefs
Programs
-
Maple
E1 := proc(n, k) combinat:-eulerian1(n, k) end: p := (n, x) -> add(E1(n, k)*k!*(n - k)!*(-x)^k, k = 0..n): seq(print(seq(coeff(p(n, x), x, k), k=0..n)), n = 0..8); seq(p(n, 1)/(n + 1)!, n = 0..14); # check the Bernoulli representation
-
Mathematica
T[n_, k_] := k! * (n-k)! * Sum[(-1)^(k-j) * (k-j+1)^n * Binomial[n+1, j], {j, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // TableForm (* Diagonals: *) d[n_, k_] := k! * (n - k)! * Sum[(-1)^(n-k-j)*(n - j - k + 1)^n * Binomial[n + 1, j], {j, 0, n - k}];
Formula
Let p_n(x) = Sum_{k=0..n} Eulerian(n, k)*k!*(n - k)! * (-x)^k. For x = 1 these polynomials give rise to the representation Bernoulli(n) = p_n(1) / (n + 1)!.
T(n, k) = [x^k] p_n(x).
T(n, k) = (-1)^k*Eulerian(n, k)*k!*(n - k)!.
T(n, k) = k! * (n-k)! * Sum_{j=0..k} (-1)^(k-j)*(k-j+1)^n*binomial(n+1, j).
Comments