A356547
Triangle read by rows. T(n, k) are the coefficients of polynomials p_n(x) based on the Eulerian numbers of second order representing the Bernoulli numbers as B_n = p_n(1) / (2*(2*n - 1)!).
Original entry on oeis.org
1, 1, 0, 6, -4, 0, 120, -192, 72, 0, 5040, -15840, 13920, -3456, 0, 362880, -2096640, 3306240, -1918080, 345600, 0, 39916800, -413683200, 1053803520, -1064448000, 448519680, -62208000, 0, 6227020800, -114960384000, 447866496000, -699342336000, 506348236800, -164428185600, 18289152000, 0
Offset: 0
The triangle T(n, k) of the coefficients, sorted in ascending order, starts:
[0] 1;
[1] 1, 0;
[2] 6, -4, 0;
[3] 120, -192, 72, 0;
[4] 5040, -15840, 13920, -3456, 0;
[5] 362880, -2096640, 3306240, -1918080, 345600, 0;
[6] 39916800, -413683200, 1053803520, -1064448000, 448519680, -62208000, 0;
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270. (Since the thirty-fourth printing, Jan. 2022, with B(1) = 1/2.)
- Amy M. Fu, Some Identities Related to the Second-Order Eulerian Numbers, arXiv:2104.09316 [math.CO], Apr. 2021.
- Peter Luschny, How are the Eulerian numbers of the first-order related to the Eulerian numbers of the second-order?, MathOverflow, Feb. 2021.
- Pietro Majer, Expressions involving Eulerian numbers of the second kind, MathOverflow, Nov 2010.
- G. Rzadkowski, M. Urlinska, A Generalization of the Eulerian Numbers, arXiv:1612.06635 [math.CO], 2016
- Cormac O'Sullivan, Stirling's approximation and a hidden link between two of Ramanujan's approximations, arXiv:2208.02898 [math.NT], Aug. 2022.
-
E2 := proc(n, k) combinat:-eulerian2(n, k) end:
p := (n, x) -> `if`(n = 0, 1, add(E2(n, k)*k!*(2*n - k - 1)!*(-x)^k, k = 0..n)):
seq(print([n], seq(coeff(p(n, x), x, k), k = 0..n)), n = 0..7);
seq(`if`(n = 0, 1, p(n, 1)/(2*(2*n-1)!)), n = 0..14); # check Bernoulli numbers
A356601
Triangle read by rows. T(n, k) = denominator(Integral_{z=0..1} Eulerian(n, k)*z^(k + 1)*(z - 1)^(n - k - 1) dz), where Eulerian(n, k) = A173018(n, k), for n >= 1, and T(0, 0) = 1.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 12, 3, 4, 1, 20, 30, 20, 5, 1, 30, 30, 10, 15, 6, 1, 42, 35, 70, 105, 14, 7, 1, 56, 7, 280, 35, 56, 7, 8, 1, 72, 252, 56, 630, 504, 28, 72, 9, 1, 90, 180, 105, 630, 126, 420, 45, 45, 10, 1, 110, 495, 33, 1155, 1386, 1155, 165, 99, 110, 11, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 2, 1;
[2] 6, 3, 1;
[3] 12, 3, 4, 1;
[4] 20, 30, 20, 5, 1;
[5] 30, 30, 10, 15, 6, 1;
[6] 42, 35, 70, 105, 14, 7, 1;
[7] 56, 7, 280, 35, 56, 7, 8, 1;
[8] 72, 252, 56, 630, 504, 28, 72, 9, 1;
[9] 90, 180, 105, 630, 126, 420, 45, 45, 10, 1;
The Bernoulli numbers (with B(1) = 1/2) are the row sums of the fractions.
[0] 1 = 1;
[1] + 1/2 = 1/2;
[2] - 1/6 + 1/3 = 1/6;
[3] + 1/12 - 1/3 + 1/4 = 0;
[4] - 1/20 + 11/30 - 11/20 + 1/5 = -1/30;
[5] + 1/30 - 13/30 + 11/10 - 13/15 + 1/6 = 0;
[6] - 1/42 + 19/35 - 151/70 + 302/105 - 19/14 + 1/7 = 1/42;
-
E1 := proc(n, k) combinat:-eulerian1(n, k) end:
Trow := proc(n, z) if n = 0 then return 1 fi;
seq(denom(int(E1(n, k)*z^(k + 1)*(z - 1)^(n - k - 1), z=0..1)), k=0..n) end:
for n from 0 to 9 do Trow(n, z) od;
-
Unprotect[Power]; Power[0, 0] = 1;
E1[n_, k_] /; n == k = 0^k; E1[n_, k_] /; k < 0 || k > n = 0;
E1[n_, k_] := E1[n, k] = (k + 1)*E1[n - 1, k] + (n - k)*E1[n - 1, k - 1];
T[n_, k_] /; n == k = 0^k;
T[n_, k_] := (-1)^(k - n + 1)*E1[n, k]*Gamma[k + 2]*Gamma[n - k]/Gamma[n + 2];
Table[Denominator[T[n, k]], {n, 0, 8}, {k, 0, n}] // TableForm
A356602
Triangle read by rows. T(n, k) = numerator(Integral_{z=0..1} Eulerian(n, k)*z^(k + 1)*(z - 1)^(n - k - 1) dz), where Eulerian(n, k) = A173018(n, k) for n >= 1, and T(0, 0) = 1.
Original entry on oeis.org
1, 1, 0, -1, 1, 0, 1, -1, 1, 0, -1, 11, -11, 1, 0, 1, -13, 11, -13, 1, 0, -1, 19, -151, 302, -19, 1, 0, 1, -5, 1191, -302, 397, -15, 1, 0, -1, 247, -477, 15619, -15619, 477, -247, 1, 0, 1, -251, 1826, -44117, 15619, -44117, 1826, -251, 1, 0
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 0;
[2] -1, 1, 0;
[3] 1, -1, 1, 0;
[4] -1, 11, -11, 1, 0;
[5] 1, -13, 11, -13, 1, 0;
[6] -1, 19, -151, 302, -19, 1, 0;
[7] 1, -5, 1191, -302, 397, -15, 1, 0;
[8] -1, 247, -477, 15619, -15619, 477, -247, 1, 0;
[9] 1, -251, 1826, -44117, 15619, -44117, 1826, -251, 1, 0;
The Bernoulli numbers (with B(1) = 1/2) are the row sums of the fractions.
[0] 1 = 1;
[1] + 1/2 = 1/2;
[2] - 1/6 + 1/3 = 1/6;
[3] + 1/12 - 1/3 + 1/4 = 0;
[4] - 1/20 + 11/30 - 11/20 + 1/5 = -1/30;
[5] + 1/30 - 13/30 + 11/10 - 13/15 + 1/6 = 0;
[6] - 1/42 + 19/35 - 151/70 + 302/105 - 19/14 + 1/7 = 1/42;
-
E1 := proc(n, k) combinat:-eulerian1(n, k) end:
Trow := proc(n, z) if n = 0 then return 1 fi;
seq(numer(int(E1(n, k)*z^(k + 1)*(z - 1)^(n - k - 1), z=0..1)), k=0..n) end:
for n from 0 to 9 do Trow(n, z) od;
-
Unprotect[Power]; Power[0, 0] = 1;
E1[n_, k_] /; n == k = 0^k; E1[n_, k_] /; k < 0 || k > n = 0;
E1[n_, k_] := E1[n, k] = (k + 1)*E1[n - 1, k] + (n - k)*E1[n - 1, k - 1];
T[n_, k_] /; n == k = 0^k;
T[n_, k_] := (-1)^(k - n + 1)*E1[n, k]*Gamma[k + 2]*Gamma[n - k]/Gamma[n + 2];
Table[Numerator[T[n, k]], {n, 0, 8}, {k, 0, n}] // TableForm
Showing 1-3 of 3 results.
Comments