A356545
Triangle read by rows. T(n, k) are the coefficients of polynomials p_n(x) based on the Eulerian numbers of first order representing the Bernoulli numbers as B_n = p_n(1) / (n + 1)!.
Original entry on oeis.org
1, 1, 0, 2, -1, 0, 6, -8, 2, 0, 24, -66, 44, -6, 0, 120, -624, 792, -312, 24, 0, 720, -6840, 14496, -10872, 2736, -120, 0, 5040, -86400, 285840, -347904, 171504, -28800, 720, 0, 40320, -1244880, 6181920, -11245680, 8996544, -3090960, 355680, -5040, 0
Offset: 0
The table T(n, k) of the coefficients, sorted in ascending order, starts:
[0] 1;
[1] 1, 0;
[2] 2, -1, 0;
[3] 6, -8, 2, 0;
[4] 24, -66, 44, -6, 0;
[5] 120, -624, 792, -312, 24, 0;
[6] 720, -6840, 14496, -10872, 2736, -120, 0;
[7] 5040, -86400, 285840, -347904, 171504, -28800, 720, 0;
[8] 40320, -1244880, 6181920, -11245680, 8996544, -3090960, 355680, -5040, 0;
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 268. (Since the thirty-fourth printing, Jan. 2022, with B(1) = 1/2.)
- Ira Gessel, Eulerian number identity, MathOverflow, Apr 2019.
- Peter Luschny, How are the Eulerian numbers of the first-order related to the Eulerian numbers of the second-order?, MathOverflow, Feb. 2021.
- Peter Luschny, Eulerian polynomials.
- Oskar Schlömilch, Ueber die Bernoulli'sche Funktion und deren Gebrauch bei der Entwickelung halbconvergenter Reihen, Zeitschrift fuer Mathematik und Pysik, vol. 1 (1856), p. 193-211.
- Julius Worpitsky, Studien über die Bernoullischen und Eulerschen Zahlen, Journal für die reine und angewandte Mathematik (Crelle), 94 (1883), 203-232. See page 22, first formula.
-
E1 := proc(n, k) combinat:-eulerian1(n, k) end:
p := (n, x) -> add(E1(n, k)*k!*(n - k)!*(-x)^k, k = 0..n):
seq(print(seq(coeff(p(n, x), x, k), k=0..n)), n = 0..8);
seq(p(n, 1)/(n + 1)!, n = 0..14); # check the Bernoulli representation
-
T[n_, k_] := k! * (n-k)! * Sum[(-1)^(k-j) * (k-j+1)^n * Binomial[n+1, j], {j, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // TableForm
(* Diagonals: *)
d[n_, k_] := k! * (n - k)! * Sum[(-1)^(n-k-j)*(n - j - k + 1)^n * Binomial[n + 1, j], {j, 0, n - k}];
A356601
Triangle read by rows. T(n, k) = denominator(Integral_{z=0..1} Eulerian(n, k)*z^(k + 1)*(z - 1)^(n - k - 1) dz), where Eulerian(n, k) = A173018(n, k), for n >= 1, and T(0, 0) = 1.
Original entry on oeis.org
1, 2, 1, 6, 3, 1, 12, 3, 4, 1, 20, 30, 20, 5, 1, 30, 30, 10, 15, 6, 1, 42, 35, 70, 105, 14, 7, 1, 56, 7, 280, 35, 56, 7, 8, 1, 72, 252, 56, 630, 504, 28, 72, 9, 1, 90, 180, 105, 630, 126, 420, 45, 45, 10, 1, 110, 495, 33, 1155, 1386, 1155, 165, 99, 110, 11, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 2, 1;
[2] 6, 3, 1;
[3] 12, 3, 4, 1;
[4] 20, 30, 20, 5, 1;
[5] 30, 30, 10, 15, 6, 1;
[6] 42, 35, 70, 105, 14, 7, 1;
[7] 56, 7, 280, 35, 56, 7, 8, 1;
[8] 72, 252, 56, 630, 504, 28, 72, 9, 1;
[9] 90, 180, 105, 630, 126, 420, 45, 45, 10, 1;
The Bernoulli numbers (with B(1) = 1/2) are the row sums of the fractions.
[0] 1 = 1;
[1] + 1/2 = 1/2;
[2] - 1/6 + 1/3 = 1/6;
[3] + 1/12 - 1/3 + 1/4 = 0;
[4] - 1/20 + 11/30 - 11/20 + 1/5 = -1/30;
[5] + 1/30 - 13/30 + 11/10 - 13/15 + 1/6 = 0;
[6] - 1/42 + 19/35 - 151/70 + 302/105 - 19/14 + 1/7 = 1/42;
-
E1 := proc(n, k) combinat:-eulerian1(n, k) end:
Trow := proc(n, z) if n = 0 then return 1 fi;
seq(denom(int(E1(n, k)*z^(k + 1)*(z - 1)^(n - k - 1), z=0..1)), k=0..n) end:
for n from 0 to 9 do Trow(n, z) od;
-
Unprotect[Power]; Power[0, 0] = 1;
E1[n_, k_] /; n == k = 0^k; E1[n_, k_] /; k < 0 || k > n = 0;
E1[n_, k_] := E1[n, k] = (k + 1)*E1[n - 1, k] + (n - k)*E1[n - 1, k - 1];
T[n_, k_] /; n == k = 0^k;
T[n_, k_] := (-1)^(k - n + 1)*E1[n, k]*Gamma[k + 2]*Gamma[n - k]/Gamma[n + 2];
Table[Denominator[T[n, k]], {n, 0, 8}, {k, 0, n}] // TableForm
A356602
Triangle read by rows. T(n, k) = numerator(Integral_{z=0..1} Eulerian(n, k)*z^(k + 1)*(z - 1)^(n - k - 1) dz), where Eulerian(n, k) = A173018(n, k) for n >= 1, and T(0, 0) = 1.
Original entry on oeis.org
1, 1, 0, -1, 1, 0, 1, -1, 1, 0, -1, 11, -11, 1, 0, 1, -13, 11, -13, 1, 0, -1, 19, -151, 302, -19, 1, 0, 1, -5, 1191, -302, 397, -15, 1, 0, -1, 247, -477, 15619, -15619, 477, -247, 1, 0, 1, -251, 1826, -44117, 15619, -44117, 1826, -251, 1, 0
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 0;
[2] -1, 1, 0;
[3] 1, -1, 1, 0;
[4] -1, 11, -11, 1, 0;
[5] 1, -13, 11, -13, 1, 0;
[6] -1, 19, -151, 302, -19, 1, 0;
[7] 1, -5, 1191, -302, 397, -15, 1, 0;
[8] -1, 247, -477, 15619, -15619, 477, -247, 1, 0;
[9] 1, -251, 1826, -44117, 15619, -44117, 1826, -251, 1, 0;
The Bernoulli numbers (with B(1) = 1/2) are the row sums of the fractions.
[0] 1 = 1;
[1] + 1/2 = 1/2;
[2] - 1/6 + 1/3 = 1/6;
[3] + 1/12 - 1/3 + 1/4 = 0;
[4] - 1/20 + 11/30 - 11/20 + 1/5 = -1/30;
[5] + 1/30 - 13/30 + 11/10 - 13/15 + 1/6 = 0;
[6] - 1/42 + 19/35 - 151/70 + 302/105 - 19/14 + 1/7 = 1/42;
-
E1 := proc(n, k) combinat:-eulerian1(n, k) end:
Trow := proc(n, z) if n = 0 then return 1 fi;
seq(numer(int(E1(n, k)*z^(k + 1)*(z - 1)^(n - k - 1), z=0..1)), k=0..n) end:
for n from 0 to 9 do Trow(n, z) od;
-
Unprotect[Power]; Power[0, 0] = 1;
E1[n_, k_] /; n == k = 0^k; E1[n_, k_] /; k < 0 || k > n = 0;
E1[n_, k_] := E1[n, k] = (k + 1)*E1[n - 1, k] + (n - k)*E1[n - 1, k - 1];
T[n_, k_] /; n == k = 0^k;
T[n_, k_] := (-1)^(k - n + 1)*E1[n, k]*Gamma[k + 2]*Gamma[n - k]/Gamma[n + 2];
Table[Numerator[T[n, k]], {n, 0, 8}, {k, 0, n}] // TableForm
Showing 1-3 of 3 results.
Comments