A356547 Triangle read by rows. T(n, k) are the coefficients of polynomials p_n(x) based on the Eulerian numbers of second order representing the Bernoulli numbers as B_n = p_n(1) / (2*(2*n - 1)!).
1, 1, 0, 6, -4, 0, 120, -192, 72, 0, 5040, -15840, 13920, -3456, 0, 362880, -2096640, 3306240, -1918080, 345600, 0, 39916800, -413683200, 1053803520, -1064448000, 448519680, -62208000, 0, 6227020800, -114960384000, 447866496000, -699342336000, 506348236800, -164428185600, 18289152000, 0
Offset: 0
Examples
The triangle T(n, k) of the coefficients, sorted in ascending order, starts: [0] 1; [1] 1, 0; [2] 6, -4, 0; [3] 120, -192, 72, 0; [4] 5040, -15840, 13920, -3456, 0; [5] 362880, -2096640, 3306240, -1918080, 345600, 0; [6] 39916800, -413683200, 1053803520, -1064448000, 448519680, -62208000, 0;
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed. Addison-Wesley, Reading, MA, 1994, p. 270. (Since the thirty-fourth printing, Jan. 2022, with B(1) = 1/2.)
Links
- Amy M. Fu, Some Identities Related to the Second-Order Eulerian Numbers, arXiv:2104.09316 [math.CO], Apr. 2021.
- Peter Luschny, How are the Eulerian numbers of the first-order related to the Eulerian numbers of the second-order?, MathOverflow, Feb. 2021.
- Pietro Majer, Expressions involving Eulerian numbers of the second kind, MathOverflow, Nov 2010.
- G. Rzadkowski, M. Urlinska, A Generalization of the Eulerian Numbers, arXiv:1612.06635 [math.CO], 2016
- Cormac O'Sullivan, Stirling's approximation and a hidden link between two of Ramanujan's approximations, arXiv:2208.02898 [math.NT], Aug. 2022.
Crossrefs
Programs
-
Maple
E2 := proc(n, k) combinat:-eulerian2(n, k) end: p := (n, x) -> `if`(n = 0, 1, add(E2(n, k)*k!*(2*n - k - 1)!*(-x)^k, k = 0..n)): seq(print([n], seq(coeff(p(n, x), x, k), k = 0..n)), n = 0..7); seq(`if`(n = 0, 1, p(n, 1)/(2*(2*n-1)!)), n = 0..14); # check Bernoulli numbers
Formula
Let p_n(x) = Sum_{k=0..n} Eulerian2(n, k)*k!*(2*n - k - 1)! * (-x)^k.
T(n, k) = [x^k] p_n(x).
T(n, k) = (-1)^k*Eulerian2(n, k)*k!*(2*n - k - 1)!.
Comments