A356584 Number of instances of the stable roommates problem of cardinality n (extension to instances of odd cardinality).
1, 1, 2, 60, 66360, 4147236820, 19902009929142960, 10325801406739620796634430, 776107138571279347069904891019268480, 10911068841557131648034491574230872615312437194176
Offset: 1
Keywords
Examples
For n=3 there are 2 instances: I = {(1,2,3),(2,3,1),(3,1,2)} and J = {(1,2,3),(2,1,3),(3,1,2)}. It is meant to be read: In I, the first agent prefers agent 2 to agent 3, the second agent prefers agent 3 to agent 1, ... And other instances are just one of these two, differing by a permutation. Example: the instance K = {(1,2,3),(2,1,3),(3,2,1)} is (1 2) * J, so it is not counted as a different instance. (The '*' operation is the group action described above.)
Links
- Vladimir Ivanov, Table of n, a(n) for n = 1..31
- Zacharie Moughanim, Proof of the formula
- Wikipedia, Stable Roommates Problem
Crossrefs
Cf. A200472.
Programs
-
Mathematica
a[n_]:=Sum[((((n-1)!)*k)^k)/((n^k)*k!), {k, Divisors[n]}]; Array[a, 10] (* Stefano Spezia, Aug 14 2022 *)
Formula
In general, there are Sum_{k|n} ((k*((n-1)!))^k)/(k!*n^k) instances of the stable roommates problem.
a(n) = (1/n!)*Sum_{k|n} (n-1)!^(n/k)*(k-1)!^(n/k) * A200472(n,n/k) = Sum_{k|n} ((k*((n-1)!))^k)/(k!*n^k).
Comments