A356603 Position in A356226 of first appearance of the n-th composition in standard order (row n of A066099).
1, 2, 4, 10, 8, 20, 50, 110, 16, 40, 100, 220, 250, 550, 1210, 1870, 32, 80, 200, 440, 500, 1100, 2420, 3740, 1250, 2750, 6050, 9350, 13310, 20570, 31790, 43010, 64, 160, 400, 880, 1000, 2200, 4840, 7480, 2500, 5500, 12100, 18700, 26620, 41140, 63580, 86020
Offset: 0
Keywords
Examples
The terms together with their prime indices begin: 1: {} 2: {1} 4: {1,1} 10: {1,3} 8: {1,1,1} 20: {1,1,3} 50: {1,3,3} 110: {1,3,5} 16: {1,1,1,1} 40: {1,1,1,3} 100: {1,1,3,3} 220: {1,1,3,5} 250: {1,3,3,3} 550: {1,3,3,5} 1210: {1,3,5,5} 1870: {1,3,5,7}
Links
Crossrefs
See link for sequences related to standard compositions.
The partitions with these Heinz numbers are counted by A053251.
A subset of A066208 (numbers with all odd prime indices).
Up to permutation, these are the positions of first appearances of rows in A356226. Other statistics are:
- minimum: A356227
- maximum: A356228
- bisected length: A356229
- standard composition: A356230
- Heinz number: A356231
The sorted version is A356232.
An ordered version is counted by A356604.
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; stcinv[q_]:=1/2 Total[2^Accumulate[Reverse[q]]]; mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0]; sq=stcinv/@Table[Length/@Split[primeMS[n],#1>=#2-1&],{n,1000}]; Table[Position[sq,k][[1,1]],{k,0,mnrm[Rest[sq]]}]
Comments