A356631 a(n) is the least number k such that the sum (with multiplicity) of prime factors of k*(k+1)*...*(k+n-1) is a perfect power.
1, 4, 2, 1, 4, 5, 2, 1, 11, 18, 8, 12, 8, 15, 4, 41, 10, 65, 10, 39, 21, 5, 54, 30, 25, 2, 1, 17, 43, 2, 1, 80, 12, 41, 206, 11, 70, 39, 81, 5, 289, 50, 18, 56, 24, 10, 49, 103, 146, 77, 53, 582, 31, 58, 37, 419, 140, 174, 77, 44, 100, 168, 44, 42, 99, 13, 11, 80, 60, 101, 71, 12, 24, 70, 11, 52, 671
Offset: 1
Keywords
Examples
a(5) = 4 because the sum of prime factors of 4*5*6*7*8 = 2^6 * 3 * 5 * 7 is 2*6 + 3 + 5 + 7 = 27 = 3^3 is a perfect power, and 4 is the least number that works.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
spf:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc: ispow:= proc(n) igcd(map(t -> t[2], ifactors(n)[2]))>1 end proc: f:= proc(n) local S,t,i; S:= Vector(n,spf); t:= convert(S,`+`); for i from 1 do if ispow(t) then return i fi; t:= t-S[1]; S[1..n-1]:= S[2..n]; S[n]:= spf(i+n); t:= t+S[n]; od end proc: f(1):= 1: map(f, [$1..100]);
-
Mathematica
sopfr[n_] := Plus @@ Times @@@ FactorInteger[n]; powQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1; a[n_] := Module[{k = 1}, While[! powQ[sopfr[Product[k + i, {i, 0, n - 1}]]], k++]; k]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 19 2022 *)