A356653 Triangle read by rows. Denominators of the coefficients of a sequence of rational polynomials r_n(x) with r_n(1) = B(2*n), where B(n) are the Bernoulli numbers.
1, 1, 6, 1, 70, 21, 1, 434, 31, 93, 1, 2286, 1905, 127, 1143, 1, 11242, 1533, 511, 73, 219, 1, 53222, 14329, 10235, 2047, 2047, 6141, 1, 245730, 40955, 40955, 368595, 24573, 8191, 73719, 1, 1114078, 294903, 4681, 491505, 42129, 4681, 14043, 42129
Offset: 0
Examples
The triangle T(n, k) begins: [0] 1; [1] 1, 6; [2] 1, 70, 21; [3] 1, 434, 31, 93; [4] 1, 2286, 1905, 127, 1143; [5] 1, 11242, 1533, 511, 73, 219; [6] 1, 53222, 14329, 10235, 2047, 2047, 6141;
Programs
-
Maple
# Using function PTrans from A269941. R_row := n -> seq(coeffs(p), p in PTrans(n, n -> 1/((2*n)*(2*n + 1)), n -> (2*n)!/(2-2^(2*n)))): seq(lprint(seq(denom(r), r in R_row(n))), n=0..9);
Formula
T(n, k) = denominator([x^k] r_n(x)), where the polynomials r_n(x) are defined in A356652.
Comments