cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356654 Triangle read by rows. T(n, k) = k! * Sum_{j=k..n} Lah(n, j) * Stirling2(j, k), where Lah(n, k) = A271703(n, k).

Original entry on oeis.org

1, 0, 1, 0, 3, 2, 0, 13, 18, 6, 0, 73, 158, 108, 24, 0, 501, 1510, 1590, 720, 120, 0, 4051, 15962, 23040, 15960, 5400, 720, 0, 37633, 186270, 345786, 325920, 168000, 45360, 5040, 0, 394353, 2385182, 5469492, 6579384, 4594800, 1884960, 423360, 40320
Offset: 0

Views

Author

Peter Luschny, Sep 01 2022

Keywords

Comments

The same construction with Stirling1 in place of Stirling2 gives A225479, the ordered Stirling cycle numbers.

Examples

			Triangle T(n, k) begins:
[0] 1;
[1] 0,      1;
[2] 0,      3,       2;
[3] 0,     13,      18,       6;
[4] 0,     73,     158,     108,      24;
[5] 0,    501,    1510,    1590,     720,     120;
[6] 0,   4051,   15962,   23040,   15960,    5400,     720;
[7] 0,  37633,  186270,  345786,  325920,  168000,   45360,   5040;
[8] 0, 394353, 2385182, 5469492, 6579384, 4594800, 1884960, 423360, 40320;
		

Crossrefs

Cf. A271703, A048993, A225479, A000262 (column 1), A052838 (column 2), A084358 (row sums).

Programs

  • Maple
    L := (n, k) -> `if`(n = k, 1, binomial(n-1, k-1) * n! / k!):
    T := (n, k) -> k! * add(L(n, j) * Stirling2(j, k), j = k..n):
    seq(seq(T(n, k), k = 0..n), n = 0..9);
  • Mathematica
    T[n_, k_] := k! * Sum[Binomial[n, j] * FactorialPower[n - 1, n - j] * StirlingS2[j, k], {j, k, n}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Sep 01 2022 *)