cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356655 Clausen numbers based on the strictly proper divisors of n, 1 < d < n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 3, 1, 15, 1, 3, 1, 105, 1, 3, 1, 15, 1, 21, 1, 165, 1, 3, 1, 1365, 1, 3, 1, 15, 1, 231, 1, 255, 1, 3, 1, 25935, 1, 3, 1, 165, 1, 21, 1, 345, 1, 3, 1, 23205, 1, 33, 1, 15, 1, 399, 1, 435, 1, 3, 1, 465465, 1, 3, 1, 255, 1, 483, 1, 15, 1, 33, 1
Offset: 0

Views

Author

Peter Luschny, Aug 20 2022

Keywords

Crossrefs

Programs

  • Maple
    clausen := proc(n) numtheory[divisors](n) minus {1, n};
    map(i -> i+1, %); select(isprime, %); mul(i, i=%)  end:
    seq(clausen(n), n = 0..80);
  • Mathematica
    a[n_] := Product[If[1 < d < n && PrimeQ[d + 1], d + 1, 1], {d, Divisors[n]}]; Array[a, 100, 0] (* Amiram Eldar, Aug 20 2022 *)
  • PARI
    a(n) = if (n, vecprod(select(isprime, apply(x->x+1, setminus(divisors(n), [1,n])))), 1); \\ Michel Marcus, Aug 21 2022

Formula

a(n) = Product_{d | n} (d + 1), where d + 1 is prime and 1 < d < n.