A356656 Partition triangle read by rows. The coefficients of the incomplete Bell polynomials.
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 4, 3, 6, 1, 0, 1, 5, 10, 10, 15, 10, 1, 0, 1, 6, 15, 10, 15, 60, 15, 20, 45, 15, 1, 0, 1, 7, 21, 35, 21, 105, 70, 105, 35, 210, 105, 35, 105, 21, 1, 0, 1, 8, 28, 56, 35, 28, 168, 280, 210, 280, 56, 420, 280, 840, 105, 70, 560, 420, 56, 210, 28, 1
Offset: 0
Examples
The triangle starts: [0] 1; [1] 0, 1; [2] 0, 1, 1; [3] 0, 1, 3, 1; [4] 0, 1, [4, 3], 6, 1; [5] 0, 1, [5, 10], [10, 15], 10, 1; [6] 0, 1, [6, 15, 10], [15, 60, 15], [20, 45], 15, 1; [7] 0, 1, [7, 21, 35], [21, 105, 70, 105], [35, 210, 105], [35, 105], 21, 1; Summing the bracketed terms reduces the triangle to A048993. The first few polynomials are: [0] 1; [1] 0, z[0]; [2] 0, z[1], z[0]^2; [3] 0, z[2], 3*z[0]*z[1], z[0]^3; [4] 0, z[3], 4*z[0]*z[2]+3*z[1]^2, 6*z[0]^2*z[1], z[0]^4; [5] 0, z[4], 5*z[0]*z[3]+10*z[1]*z[2], 10*z[0]^2*z[2]+15*z[0]*z[1]^2, 10*z[0]^3* z[1], z[0]^5; It is noteworthy that the substitution z[n] -> n! for n >= 0 yields A132393. More examples are given in the authors blog post (see links).
Links
- E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
- Peter Luschny, The Bell transform.
Crossrefs
Programs
-
Maple
aRow := n -> seq(coeffs(IncompleteBellB(n, k, seq(z[i], i = 0..n))), k = 0..n): seq(aRow(n), n = 0..8);
-
SageMath
from functools import cache @cache def incomplete_bell_polynomial(n, k): Z = var(["z_" + str(i) for i in range(n - k + 1)]) R = PolynomialRing(ZZ, Z, n - k + 1, order='lex') if k == 0: return R(k^n) return R(sum(binomial(n-1,j-1) * incomplete_bell_polynomial(n-j,k-1) * Z[j-1] for j in range(n - k + 2)).expand()) def poly_row(n): return [incomplete_bell_polynomial(n, k) for k in range(n + 1)] def coeff_row(n): return flatten([[0] if (c := p.coefficients()) == [] else c for p in poly_row(n)]) for n in range(8): print(coeff_row(n))
Formula
In row n the coefficients of IBell(n, k, Z_n) for k = 0..n are lined up. Z_n denotes the set of variables z[0], z[1], ... z[n] of the incomplete Bell polynomial IBell(n, k) of degree k.
Comments