A356693 Decimal expansion of the constant B(2) = Sum_{n>=1} Sum_{m>=n+1} 1/(z(n)*z(m))^2 where z(n) is the imaginary part of the n-th nontrivial zero of the Riemann zeta function.
0, 0, 0, 2, 4, 8, 3, 3, 4, 0, 5, 3, 7, 8, 9, 1, 4, 4, 1, 7, 5, 7, 2, 3, 8, 5, 6, 4, 4, 5, 2, 0, 8, 8, 1, 7, 7, 2, 6, 2, 0, 1, 4, 7, 6, 4, 7, 2, 5, 9, 8, 0, 2, 0, 3, 0, 7, 3, 3, 8, 1, 5, 4, 5, 2, 6, 0, 6, 7, 4, 9, 8, 3, 3, 2, 5, 1, 8, 3, 1, 4, 9, 0, 4, 6, 9, 7, 9, 2, 4, 0, 4, 8, 3, 7, 2, 0, 2, 3, 1, 7, 1, 9, 8, 2, 2, 2, 8, 7, 6, 5, 6, 9, 1, 7, 4, 5, 9
Offset: 0
Examples
0.000248334053789144...
Crossrefs
Programs
-
Mathematica
Join[{0, 0, 0}, RealDigits[N[-4*Catalan + Catalan^2/2 - Pi^2/2 + (Catalan*Pi^2)/8 + Pi^4/128 + (1/64)*Zeta[4, 1/4] + (2*Zeta'[1/2]^2)/Zeta[1/2]^2 - (Catalan Zeta'[1/2]^2)/(2 Zeta[1/2]^2) - (Pi^2 Zeta'[1/2]^2)/(16*Zeta[1/2]^2) - Zeta'[1/2]^4/(8*Zeta[1/2]^4) - (2 Zeta''[1/2])/Zeta[1/2] + (Catalan Zeta''[1/2])/(2 Zeta[1/2]) + (Pi^2 Zeta''[1/2])/(16*Zeta[1/2]) + Zeta'[1/2]^2*Zeta''[1/2]/(4 Zeta[1/2]^3) - Zeta'[1/2] Zeta'''[1/2]/(6 Zeta[1/2]^2) + Zeta''''[1/2]/(24 Zeta[1/2]), 115]][[1]]]