A356748 Numbers k such that k and k+1 are both products of 2 triangular numbers.
0, 9, 90, 135, 945, 1710, 1890, 4959, 5670, 8910, 10584, 11025, 11934, 13860, 19305, 21735, 26334, 32130, 36855, 44550, 49140, 65340, 107415, 138600, 172080, 239085, 305370, 351540, 366795, 459360, 849555, 873180, 933660, 1100385, 1413720, 1516410, 1904175, 2297295
Offset: 1
Keywords
Examples
9 is a term since 9 = 3*3 and 10 = 1*10 are both products of 2 triangular numbers.
Links
- Robert Israel, Table of n, a(n) for n = 1..138
Crossrefs
Cf. A085780.
Programs
-
Maple
N:= 10^9: # for terms <= N S:= {0}: for x from 1 do s:= x*(x+1)/2; if s^2 > N then break fi; for y from x do t:= y*(y+1)/2; if s*t > N then break fi; S:= S union {s*t}; od od: L:= sort(convert(S,list)): DL:= L[2..-1]-L[1..-2]: J:= select(t -> DL[t]=1, [$1..nops(DL)]): L[J]; # Robert Israel, Apr 05 2023
-
Mathematica
t = Table[n*(n + 1)/2, {n, 0, 3000}]; s = Select[Union[Flatten[Outer[Times, t, t]]], # <= t[[-1]] &]; i = Position[Differences[s], 1] // Flatten; s[[i]] Take[Select[Partition[Union[Times@@@Tuples[Accumulate[Range[0,2500]],2]],2,1],#[[2]] - #[[1]]==1&][[All,1]],40] (* Harvey P. Dale, Oct 23 2022 *)
-
Python
from itertools import count, islice from sympy import divisors, integer_nthroot def A356748_gen(startvalue=0): # generator of terms >= startvalue if startvalue <= 0: yield 0 flag = False for n in count(max(startvalue,1)): for d in divisors(m:=n<<2): if d**2 > m: flag = False break if integer_nthroot((d<<2)+1,2)[1] and integer_nthroot((m//d<<2)+1,2)[1]: if flag: yield n-1 flag = True break else: flag = False A356748_list = list(islice(A356748_gen(),10)) # Chai Wah Wu, Aug 28 2022
Comments