A356749 a(n) is the number of trailing 1's in the dual Zeckendorf representation of n (A104326).
0, 1, 0, 2, 1, 0, 3, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 5, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 6, 1, 0, 3, 0, 2, 1, 0, 5, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 7, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0, 6, 1, 0, 3, 0, 2, 1, 0, 5, 0, 2, 1, 0, 4, 1, 0, 3, 0, 2, 1, 0
Offset: 0
Examples
n a(n) A104326(n) - ---- ---------- 0 0 0 1 1 1 2 0 10 3 2 11 4 1 101 5 0 110 6 3 111 7 0 1010 8 2 1011 9 1 1101
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
fb[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr]; f[v_] := Module[{m = Length[v], k}, k = m; While[v[[k]] == 1, k--]; m - k]; a[n_] := Module[{v = fb[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i ;; i + 2]] == {1, 0, 0}, v[[i ;; i + 2]] = {0, 1, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, f[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 100, 0]
Comments