cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356752 E.g.f. satisfies A(x) = 1/(1 - x)^(x^2/2 * A(x)).

Original entry on oeis.org

1, 0, 0, 3, 6, 20, 360, 2394, 17220, 260280, 3076920, 35980560, 595686960, 9760411440, 159321570408, 3093987619800, 63314740616400, 1318245318411840, 30240056863978560, 736919729169603840, 18522487833889334400, 495842871278901363840, 14014346231616983128800
Offset: 0

Views

Author

Seiichi Manyama, Sep 03 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; A[_] = 1;
    Do[A[x_] = 1/(1 - x)^(x^2/2*A[x]) + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, (k+1)^(k-1)*abs(stirling(n-2*k, k, 1))/(2^k*(n-2*k)!));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(-x^2/2*log(1-x))^k/k!)))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(x^2/2*log(1-x)))))
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x^2/2*log(1-x))/(x^2/2*log(1-x))))

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) * |Stirling1(n-2*k,k)|/(2^k * (n-2*k)!).
E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (-x^2/2 * log(1-x))^k / k!.
E.g.f.: A(x) = exp( -LambertW(x^2/2 * log(1-x)) ).
E.g.f.: A(x) = LambertW(x^2/2 * log(1-x))/(x^2/2 * log(1-x)).