A356756 Positive integers m such that x^2 + x + m contains at least m/2 prime numbers for x = 1, 2, ..., m.
1, 5, 11, 17, 41, 47, 59, 67, 101, 107, 161, 221, 227, 347, 377
Offset: 1
Examples
17 is a term since x^2 + x + 17 is prime for x = 1, 2, 3, ..., 15, which is 15 values of x, and 15 >= 17/2.
Links
- S. A. Goudsmit, Unusual Prime Number Sequences, Nature Vol. 214 (1967), 1164.
Programs
-
Mathematica
q[k_] := Count[Range[k], ?(PrimeQ[#^2 + # + k] &)] >= k/2; Select[Range[400], q] (* _Amiram Eldar, Aug 26 2022 *)
-
PARI
isok(m) = sum(k=1, m, isprime(k^2 + k + m)) > m/2; \\ Michel Marcus, Aug 26 2022
-
Python
from sympy import isprime def ok(m): return 2*sum(1 for x in range(1, m+1) if isprime(x**2+x+m)) >= m print([m for m in range(1, 400) if ok(m)]) # Michael S. Branicky, Aug 26 2022
Comments