A356767 Tetraprimes (products of four distinct primes) whose reversals are different tetraprimes.
1518, 2046, 2226, 2262, 2418, 2478, 2618, 2622, 2814, 2838, 2886, 3135, 3927, 4170, 4182, 4386, 4389, 4746, 4785, 4935, 5313, 5394, 5406, 5478, 5565, 5655, 5838, 5874, 6018, 6045, 6222, 6402, 6438, 6474, 6486, 6690, 6699, 6834, 6846, 6882, 7293, 7458, 8106, 8142
Offset: 1
Examples
1518 = 2*3*11*23 is a tetraprime. Its reversal 8151 = 3*11*13*19 is another tetraprime. Thus, 1518 is in this sequence.
Programs
-
Mathematica
Select[Range[10000],Transpose[ FactorInteger[FromDigits[Reverse[IntegerDigits[#]]]]][[2]] == {1, 1, 1, 1} && IntegerDigits[#] != Reverse[IntegerDigits[#]] && Transpose[FactorInteger[#]][[2]] == {1, 1, 1, 1} &]
-
Python
from sympy import factorint def tetra(n): return list(factorint(n).values()) == [1, 1, 1, 1] def ok(n): if not tetra(n): return False revn = int(str(n)[::-1]) return n != revn and tetra(revn) print([k for k in range(9000) if ok(k)]) # Michael S. Branicky, Aug 27 2022
Comments