cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356781 Expansion of g.f. A(x) satisfying A(x) = A( x^2 + 2*x^2*A(x) )^(1/2), with A(0)=0, A'(0)=1.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 14, 32, 74, 172, 408, 978, 2349, 5662, 13737, 33568, 82596, 204618, 510208, 1279544, 3224828, 8162144, 20735397, 52848816, 135088609, 346214873, 889451320, 2290164276, 5908894762, 15274778235, 39555942836, 102603159040, 266545251022
Offset: 1

Views

Author

Paul D. Hanna, Aug 27 2022

Keywords

Comments

Compare the g.f. to the following identities:
(1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
(2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

Examples

			G.f. A(x) = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 14*x^7 + 32*x^8 + 74*x^9 + 172*x^10 + 408*x^11 + 978*x^12 + 2349*x^13 + 5662*x^14 + ...
where A(x)^2 = A( x^2 + 2*x^2*A(x) ).
RELATED SERIES.
A(x)^2 = x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 13*x^6 + 26*x^7 + 54*x^8 + 122*x^9 + 284*x^10 + 668*x^11 + 1597*x^12 + 3864*x^13 + 9394*x^14 + ...
x^2 + 2*x^2*A(x) = x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 8*x^7 + 14*x^8 + 28*x^9 + 64*x^10 + 148*x^11 + 344*x^12 + 816*x^13 + 1956*x^14 + ...
Let G(x) = Series_Reversion( A(x) ) then
G(x) = x - x^2 + x^3 - 2*x^4 + 4*x^5 - 7*x^6 + 12*x^7 - 23*x^8 + 45*x^9 - 84*x^10 + 157*x^11 - 302*x^12 + 584*x^13 - 1121*x^14 + ...
where G(x)^2 = G(x^2)/(1 + 2*x) and G(A(x)) = x.
Also, the series bisections of G(x) = B1(x) - B2(x) begin
B1(x) = x + x^3 + 4*x^5 + 12*x^7 + 45*x^9 + 157*x^11 + 584*x^13 + 2155*x^15 + 8110*x^17 + ... + A370540(n)*x^(2*n+1) + ...
B2(x) = x^2 + 2*x^4 + 7*x^6 + 23*x^8 + 84*x^10 + 302*x^12 + 1121*x^14 + 4175*x^16 + 15739*x^18 + ...
where B2(x)/B1(x) = (1 - sqrt(1 - 4*x^2))/(2*x) = x*C(x^2) where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
SPECIFIC VALUES.
A(sqrt(8)/8) = 0.655524504794958661...
A(1/3) = 0.562844396405786198664639714324421729...
A(1/4) = 0.343586921250887627089213663537057899...
A(1/5) = 0.253260720427093363870348121973670974...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1],G); for(i=1,n, A=concat(A,0); G = x*Ser(A); A = Vec((subst(G,x, x^2 + 2*x^2*G) +x^2*O(x^#A))^(1/2)); ); A[n]}
    for(n=1, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n) * x^n satisfies the following formulas.
(1) A(x) = sqrt( A( x^2 + 2*x^2*A(x) ) ).
(2) G(x) = sqrt( G(x^2)/(1 + 2*x) ), where A(G(x)) = x.
(3) G(x) = x*F(x^2)*(1 - x*C(x^2)) = x*F(x)^2*(1 - 4*x)/(1 - x*C(x)) where G(A(x)) = x, F(x) is the g.f. of A370540, and C(x) = (1 - sqrt(1-4*x))/(2*x) is the Catalan function (A000108). - Paul D. Hanna, Mar 12 2024
a(n) ~ c * d^n / n^(3/2), where d = 2.721808159464577... and c = 0.218334153814... - Vaclav Kotesovec, Mar 14 2024