cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356791 Emirps p such that R(p) > p and R(p) mod p is prime, where R(p) is the reversal of p.

Original entry on oeis.org

13, 17, 107, 149, 337, 1009, 1069, 1109, 1409, 1499, 1559, 3257, 3347, 3407, 3467, 3527, 3697, 3767, 10009, 10429, 10739, 10859, 10939, 11057, 11149, 11159, 11257, 11497, 11657, 11677, 11717, 11897, 11959, 13759, 13829, 14029, 14479, 14549, 15149, 15299, 15649, 30367, 30557, 31267, 31307, 32257
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Sep 18 2022

Keywords

Comments

All terms start with digit 1 or 3.
It appears that the only term that does not end with digit 7 or 9 is 13.

Examples

			a(3) = 107 is a term because it is prime, its reversal 701 is prime, and 701 mod 107 = 59 is prime.
		

Crossrefs

Programs

  • Maple
    rev:= proc(n) local K,i;
      K:= convert(n,base,10);
      add(K[-i]*10^(i-1),i=1..nops(K))
    end proc:
    filter:= proc(p) local q;
      if not isprime(p) then return false fi;
      q:= rev(p);
      q > p and isprime(q) and isprime(q mod p)
    end proc:
    select(filter, [seq(i,i=3..10^5,2)]);
  • Mathematica
    q[p_] := Module[{r = IntegerReverse[p]}, r > p && PrimeQ[r] && PrimeQ[Mod[r, p]]]; Select[Prime[Range[3500]], q] (* Amiram Eldar, Sep 18 2022 *)
  • Python
    from sympy import isprime
    def ok(n):
        r = int(str(n)[::-1])
        return r > n and isprime(n) and isprime(r) and isprime(r%n)
    print([k for k in range(10**5) if ok(k)]) # Michael S. Branicky, Sep 18 2022